Abbasbandy, S. & Taati, A. (2009). Numerical solution of the system of nonlinear Volterra integro-differential equations with nonlinear differential part by the operational Tau method and error estimation, Journal of Computational and Applied Mathematics, 231, 106-113.
Biazar, J. & Aminikhah, H. (2009). A new technique for solving integro-differential equations, Computers and Mathematics with Applications, 58, 2084-2090
Biazar, J. & Ghazvini, H. (2009). He’s homotopy perturbation method for solving systems of Volterra integral equations of the second kind, Chaos, Solitons and Fractals, 39, 770-777.
Biazar, J., Babolian, E., & Islam, R. (2003). Solution of a system of Volterra integral equations of the first kind by Adomian method. Applied Mathematics and Computation, 139(2-3), 249-258.
Biazar, J., Eslami, M., & Aminikhah, H. (2009). Application of homotopy perturbation method for systems of Volterra integral equations of the first kind, Chaos, Solitons and Fractals, 42, 3020-3026.
Chau, F.T., Liang, Y.Z., Gao, J. & Shao, X.G. (2004). Chemometrics: From Basics to Wavelets Transform, Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Christensen O. & Christensen, K.L. (2004). Approximation Theory: from Taylor Polynomial to Wavelets. Birkhauser Boston.
Chui, C. K. (1997). Wavelets: A Mathematical Tool for Signal Analysis, SIAM, Philadelphia, PA.
Daubeches, I. (1992). Ten Lectures on Wavelets. CBMS-NSF.
Dehghan, M., Shakourifar, M., & Hamidi, A. (2009). The solution of linear and nonlinear systems of Volterra functional equations using Adomian-Pade technique, Chaos, Solitons and Fractals, 39, 2509-2521.
Gautschi, W. (2004). Orthogonal Polynomials: Computation and Approximation, Oxford University Press.
Golbabai, A., Mammadov, M., & Seifollahi, S. (2009). Solving a system of nonlinear integral equations by an RBF network, Computers and Mathematics with Applications, 57, 1651-1658.
Hernandez E. & Weiss, G. (1996). A First Course on Wavelets. CRC Press LLC.
Maleknejad, K. & Shahrezaee, M. (2004). Using Runge-Kutta method for numerical solution of the system of Volterra integral equation, Applied Mathematics and Computation, 149, 399-410.
Nielsen, O. M. (1998). Wavelets in scientific computing, PH. D. Dissertation, Technical University of Denmark.
Pour-Mahmoud J. & Rahimi-Ardabili, M.Y., & Shamorad, S. (2005). Numerical solution of the system of Fredholm integro-differential equations by the Tau method, Applied Mathematics and Computation, 168, 465-478.
Walnut, D.F. (2002). An introduction to Wavelet Analysis, Birkhauser, Boston, Basel, Berlin.