Application of the Lie Symmetry Analysis for Second-order Fractional Differential Equations

Mousa Ilie¹,², Jafar Biazar²,³ and Zainab Ayati ⁴*

¹ Department of Mathematics, Guilan Science and Research Branch, Islamic Azad University, Rasht, Iran
² Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran
³ Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, P.O. Box. 41335-1914, Guilan, Rasht, Iran
⁴ Department of Engineering sciences, Faculty of Technology and Engineering East of Guilan, University of Guilan, P.C. 44891-63157, Rudsar-Vajargah, Iran

Received: 29 March 2017
Accepted: 29 May 2017

Keywords:
fractional differential equations
Lie Symmetry method
conformable fractional derivative

Abstract
Obtaining analytical or numerical solution of fractional differential equations is one of the troublesome and challenging issue among mathematicians and engineers, specifically in recent years. The purpose of this paper Lie Symmetry method is developed to solve second-order fractional differential equations, based on conformable fractional derivative. Some numerical examples are presented to illustrate the proposed approach.

*Correspondence E-mail: ayati.zainab@gmail.com
INTRODUCTION

Although solving fractional differential equations is very important, there are many fractional differential equations which can’t be solved analytically. Due to this fact, finding an approximate solution of fractional differential equations is clearly an important task. In recent years, many effective methods have been proposed for finding approximate solution to fractional differential equations (Ouhadan & Elkinani, 2014; Elsaid et al., 2016; Zhanglie, 2015; Yang et al., 2014; Kumar et al., 2014; Khalil & Rashidi, 2015; Singh et al., 2016; Gaur & Singh, 2016; Gaur & Singh, 2016). The purpose of this paper Lie Symmetry method is expanding to solve fractional differential equations, based on conformable fractional derivative.

The organization of this paper is as follows: In Section 2, Conformable fractional derivative, will be described. In Section 3, Lie symmetry method for second-order fractional equations, will be explained. In Section 4, devoted to solving three second-order nonlinear fractional differential equations. Finally, discussion will be given, in section 5.

CONFORMABLE FRACTIONAL DERIVATION

Recently, conformable fractional derivative is proposed which removed some of drawbacks the presented definitions (Khalil et al., 2014; Abdeljawad, 2015).

Consider a function \(f: [0, \infty) \rightarrow \mathbb{R} \). Then conformable fractional derivative of \(f \) of order \(\alpha \) is defined by

\[
T_{\alpha} (f)(t) = \lim_{\varepsilon \to 0} f((t+\varepsilon t^{1-\alpha})/\varepsilon)
\]

for all \(t > 0, \alpha \in (0, 1] \). If \(f \) is \(\alpha \)- differentiable in some \((0, a)\), \(a > 0 \), and \(\lim_{t \to 0^+} T_{\alpha} (f)(t) \) exists, then one can define \(T_{\alpha} (f)(0) = \lim_{t \to 0^+} T_{\alpha} (f)(t) \).

If the conformable derivative of \(f \), of order \(\alpha \), exists then we simply say that \(f \) is \(\alpha \)- differentiable.

One can easily show that \(T_{\alpha} \) satisfies all the following properties:

Let \(\alpha \in (0, 1] \) and be \(\alpha \)-differentiable at a point \(t > 0 \), Then

1. For \(a, b \in \mathbb{R} \) \(T_{\alpha} (af+bg) = a \cdot T_{\alpha} (f) + b \cdot T_{\alpha} (g) \).
2. For all \(p \in \mathbb{R} \) \(T_{\alpha} (t^p) = pt^{p-\alpha} \).
3. For all constant functions \(f(t) = \lambda, \ T_{\alpha} (\lambda) = 0 \),

\[
T_{\alpha} (f,g) = g \cdot T_{\alpha} (f) + f \cdot T_{\alpha} (g),
T_{\alpha} (f/g) = g \cdot T_{\alpha} (f) \cdot f \cdot T_{\alpha} (g)/g^2,
T_{\alpha} (f) = t^{\alpha-1} df/dt.
\]

LIE SYMMETRY METHOD FOR SECOND-ORDER FRACTIONAL DIFFERENTIAL EQUATIONS

The second-order fractional differential equations can be as following

\[
T_{\alpha} T_{\alpha} y = G(t, y, T_{\alpha} y), \tag{1}
\]

where \(G \) is a functional operator and \(y \) is an unknown function \(\alpha \)-differentiable.

Changing the independent variable as follows \(x = t^\alpha \), and substitution of into Eq. 1, leads to

\[
y'' = F(x, y, y') \tag{2}
\]

Eq. 2 is a second-order ordinary differential equation.

Consider Eq. 2 is invariant under Lie group

\[
x = x + X(x, y) \varepsilon + O(\varepsilon^2), \quad y = y + Y(x, y) \varepsilon + O(\varepsilon^2), \tag{3}
\]

namely if be confirmed Eq. 2, then

\[
y'' = F(x, y, y') \tag{4}
\]

Substitution of the infinitesimal transformation 3 and their second-order derivative into Eq. 4 results in

\[
d^2 y/dx^2 + (\partial^2 Y/\partial x \partial y - \partial^2 X/\partial y^2) dy/dx + (\partial Y/\partial x - \partial X/\partial y)(dy/dx)^2 - \partial^2 X/\partial y^2 (dy/dx)^3 - (\partial Y/\partial x - \partial X/\partial y)(dy/dx)^3 + O(\varepsilon^2). \tag{5}
\]

Expanding to order \(O(\varepsilon^2) \) gives

\[
d^2 y/dx^2 + (\partial^2 Y/\partial x \partial y - \partial^2 X/\partial y^2) dy/dx + (\partial Y/\partial x - \partial X/\partial y)(dy/dx)^2 - \partial^2 X/\partial y^2 (dy/dx)^3 - (\partial Y/\partial x - \partial X/\partial y)(dy/dx)^3 + O(\varepsilon^2). \tag{6}
\]

Discussed Lie group would be valued , if by using Eq. 2 , the following results be satisfied to \(O(\varepsilon^2) \).
\[
\frac{\partial^2 Y}{\partial x^2} + \frac{\partial^2 Y}{\partial x \partial y} - \frac{\partial^2 X}{\partial x^2} \frac{dy}{dx} + \left[\frac{\partial^2 Y}{\partial y^2} - 2 \frac{\partial^2 Y}{\partial x \partial y} \frac{dy}{dx} \right] \frac{d(x^2)}{dx} = 0.
\]

This is known as Lie's Invariance Condition, and for a given \(F(x,y) \), any functions \(X(x,y) \) and \(Y(x,y) \) that solve Eq. 6 are the infinitesimals. Thus, if we have the infinitesimals \(X \) and \(Y \) then solving equations

\[
X \frac{\partial F}{\partial x} + Y \frac{\partial F}{\partial y} + \left(\frac{\partial Y}{\partial y} - \frac{\partial X}{\partial x} \right) \frac{dy}{dx} \frac{\partial F}{\partial y} = 0,
\]

\[
X \frac{\partial F}{\partial x} + Y \frac{\partial F}{\partial y} + \left(\frac{\partial Y}{\partial y} - \frac{\partial X}{\partial x} \right) \frac{dy}{dx} \frac{\partial F}{\partial y} = 0,
\]

would lead to the production alteration, that Eq. 2 converts of a second-order equation independent of \(s \) (Arrigo, 2015; Hydon, 2000; Olver, 2000).

EXAMPLES

In this section, to illustrate the proposed approach, three examples will be presented.

Example 1. Consider nonlinear fractional differential equation the following

\[
T_a \frac{t^a}{T_a} y + 3y T_a y + y^2 = 0
\]

Changing the independent variable as follows \(x = 1/\alpha \ r^a \), and substitution of into Eq. 7 results in

\[
y'' + 3yy' + y^3 = 0,
\]

where

\[
F(x,y,y') = -3yy' - y^3.
\]

By substitution of 9 into Eq. 5, we drive

\[
\frac{\partial^2 Y}{\partial x^2} + \left[\frac{\partial^2 Y}{\partial x \partial y} - \frac{\partial^2 X}{\partial x^2} \right] y' + \frac{\partial^2 Y}{\partial y^2} - 2 \frac{\partial^2 Y}{\partial x \partial y} y' + \frac{\partial Y}{\partial y} - 2 \frac{\partial X}{\partial x} y'(3y'y' + 3y' + 3y) + \left(\frac{\partial Y}{\partial x} + \frac{\partial Y}{\partial y} - \frac{\partial X}{\partial x} \right) y' + 3y(\partial X/\partial x + \partial Y/\partial x)^2 = 0.
\]

Setting the coefficients of \(y'y' \), and \(y'y' \) to zero, gives

\[
(\partial^2 Y)/(\partial x^2) + 2y'y \partial X/\partial x + 3y'y + 3y'y \partial Y/\partial x = 0,
\]

\[
2(\partial^2 Y)/(\partial x \partial y) - (\partial^2 X)/(\partial x^2) + 3y' \partial X/\partial x + 3y'
\]

\[
\partial X/\partial y + 3y = 0,
\]

\[
(\partial^2 Y)/(\partial y^2) - 2(\partial^2 X)/(\partial x \partial y) + 6y \partial X/\partial y = 0,
\]

\[
(\partial^2 X)/(\partial y^2) = 0.
\]

The solution of the system of Eq. 10 leads to the infinitesimals \(X \) and \(Y \) as the following

\[
X = (c_1 + c_2 x + c_3 x^2 + c_4 x^3 + c_5 x^4) y + c_6 + c_7 x + c_8 x^2 - 2c_5 x^3,
\]

\[
Y = -(c_1 + c_2 x + c_3 x^2 + c_4 x^3 + c_5 x^4) y^3 + (c_2 + 2c_3 x + 3c_4 x^2 + 4c_5 x^3 + 4c_6 + 2c_7 + 2c_8 + 4c_9 x,
\]

where \(c_1, c_2, \ldots, c_8 \) are arbitrary constants.

For example if \(c_1 = 1, c_2 = c_3 = \cdots = c_8 = 0 \), then according to Eqs. 11, the infinitesimals \(X \) and \(Y \) as follows

\[
X = y, \quad Y = -y^3.
\]

Substitution of this infinitesimals of Eq. 6, and its solving leads to

\[
r = x; \quad s = y^2,
\]

that under this change of variables, Eq. 8 becomes

\[
s'' = 1.
\]

Example 2. Consider fractional differential equation the following

\[
\frac{\alpha y^2}{T_a} T_a y + 2y \frac{\alpha y^2}{T_a} y = 0
\]

Changing the independent variable as follows \(x = 1/\alpha \ r^a \), and substitution of into Eq. 14 yields in

\[
y' + 2x(y')^3/y^2 = 0,
\]

that

\[
F(x,y,y') = -2x(y')^3/y^2.
\]

By substitution of 16 into Eq. 5, we drive

\[
\frac{\partial^2 Y}{\partial x^2} + \left[\frac{\partial^2 Y}{\partial x \partial y} - \frac{\partial^2 X}{\partial x^2} \right] y' + \frac{\partial^2 Y}{\partial y^2} - 2 \frac{\partial^2 Y}{\partial x \partial y} y' + \frac{\partial Y}{\partial y} - 2 \frac{\partial X}{\partial x} y'(2y' + 3y) + \left(\frac{\partial Y}{\partial x} + \frac{\partial Y}{\partial y} - \frac{\partial X}{\partial x} \right) y' + 3y(\partial X/\partial x + \partial Y/\partial x)^2 = 0.
\]

Setting the coefficients of \(y'y' \), and \(y'y' \) to zero, gives

\[
(\partial^2 Y)/(\partial x^2) + 2y'y \partial X/\partial x + 3y'y + 3y'y \partial Y/\partial x = 0,
\]

\[
2(\partial^2 Y)/(\partial x \partial y) - (\partial^2 X)/(\partial x^2) + 3y' \partial X/\partial x + 3y'
\]

\[
\partial X/\partial y + 3y = 0,
\]

\[
(\partial^2 Y)/(\partial y^2) - 2(\partial^2 X)/(\partial x \partial y) + 6y \partial X/\partial y = 0,
\]

\[
(\partial^2 X)/(\partial y^2) = 0.
\]
\[\frac{\partial X}{\partial y} \left(y' \right)^2 \left(6x(y')^2 \right) / y^2 = 0 \]

Setting the coefficients of \(y', y'' \), and \(y'' \) to zero, gives

\[
(\partial^2 Y)/ (\partial x^2) = 0,
2 \partial^2 Y)/ (\partial x \partial y) - (\partial X)/(\partial x^2) = 0,
(\partial^2 Y)/(\partial y^2) = -2 \partial^2 X/ \partial x^2 y + 6x/y^2 \partial Y/ \partial y + 2 \partial X/ \partial y + 2y^2 X - 4x/y^3 Y = 0.
\]

The solution of the system of Eq. 17 leads to the infinitesimals \(X \) and \(Y \) as follows

\[
X = (2c_1 y + c_2 / y^2) x^2 + (2c_3 y^3 + c_4 / y^3 + c_5) x + c_6 y^2 + c_7 / y
\]

\[Y = (c_1 y^2 - c_2 / y) x + c_3 y^4 + c_8 y - c_4 / y^2 \] \tag{18}

where \(c_1, c_2, \ldots, c_8 \), are arbitrary constants.

For example if \(c_5 = 1 \), and other \(c_i = 0 \), according to Eqs. 18 and 6, we gives

\[
\begin{align*}
Y &= 0, \\
2(\partial^2 Y) / (\partial x \partial y) - \partial^2 X / (\partial x^2) + y \partial X / \partial x + 3xy^4 \partial X / \partial y + Y &= 0, \\
\partial^2 Y / (\partial y^2) - 2 \partial^2 X / (\partial x^2) y + 2y \partial X / \partial y &= 0, \\
\partial^2 X / (\partial y^2) &= 0.
\end{align*}
\]

The solution of the system of Eq. 17 leads to the infinitesimals \(X \) and \(Y \) as follows

\[
X = cx, \\
Y = -cy.
\] \tag{24}

By setting \(c = 1 \), in 24 and substituting this of Eq. 6, and its solving leads to

\[
r = xy, \quad s = \ln x.
\]

In terms of these new variables, Eq. 21 becomes

\[
s'' = (r^4 - r^2 + 2r) (s')^3 + (r - 3)(s')^2,
\]

that is a second-order differential equation independent of \(s \).

CONCLUSION

In this paper, Lie Symmetry Analysis method have been applied for solving fractional differential equations, based on conformable fractional derivative. Second-order fractional differential equations, have been explained by the presented method. Some examples are given for more explanation and clarification. The results showed that the presented method is easily applicable for this kind of equations.

REFERENCE

