• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login ▼
    • Login
    • Register
  • Persian
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Iranian Journal of Optimization
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 11 (2019)
Volume Volume 10 (2018)
Volume Volume 9 (2017)
Volume Volume 8 (2016)
Volume Volume 7 (2015)
Issue Issue 2
Issue Issue 1
Volume Volume 6 (2014)
Volume Volume 5 (2013)
Volume Volume 4 (2012)
Volume Volume 3 (2011)
Volume Volume 2 (2010)
Volume Volume 1 (2009)
Fariborzi Araghi, M., Froozanfar, F. (2015). A method to obtain the best uniform polynomial approximation for the family of rational function. Iranian Journal of Optimization, 7(1), 753-766.
M. A. Fariborzi Araghi; F. Froozanfar. "A method to obtain the best uniform polynomial approximation for the family of rational function". Iranian Journal of Optimization, 7, 1, 2015, 753-766.
Fariborzi Araghi, M., Froozanfar, F. (2015). 'A method to obtain the best uniform polynomial approximation for the family of rational function', Iranian Journal of Optimization, 7(1), pp. 753-766.
Fariborzi Araghi, M., Froozanfar, F. A method to obtain the best uniform polynomial approximation for the family of rational function. Iranian Journal of Optimization, 2015; 7(1): 753-766.

A method to obtain the best uniform polynomial approximation for the family of rational function

Article 1, Volume 7, Issue 1, Spring 2015, Page 753-766  XML PDF (711.7 K)
Document Type: Research Paper
Authors
M. A. Fariborzi Araghi email 1; F. Froozanfar2
1Department of Mathematics, Islamic Azad university, Central Tehran branch
2Ms.student of Mathematics, Islamic Azad university, Kermanshah branch, Kermanshah, Iran
Receive Date: 20 September 2014,  Revise Date: 20 November 2014,  Accept Date: 20 November 2014 
Abstract
In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4ac L 0 and b2-4ac G 0. 
 
Keywords
Chebyshev’s polynomials; Chebyshev’s expansion; uniform norm; the best uniform polynomial approximation; alternating set
Main Subjects
Mathematical Engineering; Numerical Analysis
References
[1] Achieser N. I., Theory of Approximation, Ungar, New York, 1956.      

[2] Achieser N.I., Theory of Approximation, Dover, New York, translated from Russian, 1992.

[3] Bernstein S.N., Extremal Properties of Polynomials and the Best Approximation of Continuous Functions of Single Real Variable, State United Scientific and Technical Publishing House, translated from Russian, 1937.

[4] Cheney E.W., Introduction to Approximation Theory, Chelsea, New York, 1982.

[5] Dehghan M., Eslahchi M.R., Best uniform polynomial approximation of some rational functions,Computers and Mathematics with applications, 2009.

[6] Eslahchi M.R., Dehghan M., The best uniform polynomial approximation to class of the form, Nonlinear Anal., TMA 71 (740_750), 2009.

[7] Golomb M., Lectures on theory of approximation, Argonne National Laboratory, Chicago, 1962.

[8] Jokar S., Mehri B., The best approximation of some rational functions in uniformnorm, Appl. Numer. Math. 55 (204-214), 2005.

[9] Lam B., Elliott D., Explicit results for the best uniform rational approximation to certain continuous functions, J. Approximation Theory 11 (126-133), 1974.

[10] Lorentz G.G., Approximation of Functions, Holt, Rinehart and Winston, New York, 1986.

[11] Lubinsky D. S., Best approximation and interpolation of  and itstransforms, J. Approx. Theory 125 (106-115), 2003.

[12] Mason J. C., Handscomb D. C., Chebyshev polynomials, Chapman & Hall/CRC, 2003.

[13]-Newman D.J., Rivlin T. J., Approximation of monomials by lower degree polynomials, Aeq. Math. 14 (451-455), 1976.

[14] Ollin H. Z., Best polynomial approximation to certain rational functions, J.Approx. Theory 26 (389-392), 1979.

[15] Rivlin T. J., An introduction to the approximation of functions, Dover, New York, 1981.

[16] Rivlin T. J., Chebyshev Polynomials. New York: Wiley, 1990.

[17]-Rivlin T. J., Polynomials of best uniform approximation to certain rational functions, Numer. Math. 4 (345-349), 1962.

[18] Timan A.F., Theory of Approximation of a Real Variable, Macmillan, New York, translated from Russian, 1963.

[19] Watson G. A., Approximation Theory and Numerical Methods Chicago, John Wiley & Sons, 1980.

Statistics
Article View: 330
PDF Download: 284
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Free web analytics powered by GoStats.

Journal Management System. Designed by sinaweb.