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Abstract

In this article we consider the averaging method for differential inclusions with

fuzzy right-hand side for the case when the limit of a method of an average

does not exist.

Keywords: differential inclusion, averaging method, fuzzy set, R-solution.

1. Introduction

One possibility of modeling uncertainty in a dynamical system is to

replace functions in the problem

nRxxtxtftx  0)0()),(,()( (1.1)
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by set-valued functions [12,13,19]. This leads to the following (generalized)

initial value problem

,)0()),(,()( 0
nRxxtxtFtx  (1.2)

where F is a set-valued function [3,7,18].

A reasonable generalization of ''set-valued'' modeling, which takes

aspects of gradedness into account, is the replacement of sets by fuzzy sets, i.e.

(1.2) becomes the fuzzy initial value problem

,)0()),(,(
~

)( 0
nExxtxtFtx  (1.3)

with a fuzzy function F
~

[1,2,5,6,8,11].

As it is known, for usual differential inclusions the average method is

well justified [15]. Therefore we in the given paper will justify a possibility of

application of a method of an average for differential inclusions with a fuzzy

right-hand side.

2. Preliminaries

Let )( nRconv be the family of all nonempty compact convex subsets of

nR with the Hausdorff metric

 ,minmax,minmaxmax),( babaBAh
AaBbBbAa




where  denotes the usual Euclidean norm in nR .

Let nE be the family of mappings  1,0: nRx satisfying the

following conditions:

1) x is normal, i.e. there exists an nR0 such that   10 x ;

2) x is fuzzy convex, i.e.        xxx ,min)1(  whenever

nR , and  1,0 ;
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3) x is upper semicontinuous, i.e. for any nR0 and 0 exists

  0,0  such that

      0xx whenever nR  ,0 ;

4) the closure of the set   0:   xRcl n is compact.

Let 0̂ be the fuzzy mapping defined by   00̂  if 0 and   100̂  .

Definition 2.1. The set    yxRy n : is called the  -level  x of a

mapping nEx for 10  . The closure of the set   0:  yxRy n is

called the 0 - level  0x of a mapping nEx .

Theorem 2.1. [14] If nEx then

1)    nRconvx 


for all 10  ;

2)     12 
xx  for all 10 21   ;

3) if    1,0k is a nondecreasing sequence converging to 0 , then

   
1


k

kxx


.

Conversely, if  10: A is the family of subsets of nR satisfying

the conditions 1) - 3) then there exists nEx such that   
Ax  for 10 

and   0

10

0
AAx 





 .

Define the metric  REED nn: by the equation

 
 

    



yxhyxD ,sup,
1,0

 .

Using the results of [17], we know that

(1)  DE n , is a complete metric space,
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(2)    yxDzyzxD ,,  for all nEzyx ,, ,

(3)    yxDkkykxD ,,  for all RkEyx n  ,, .

Let I be an interval in R .

Definition 2.2. A mapping nEIf : is called continuous at point It 0

provided for any 0 there exists 0 such that      0, tftfD

whenever Ittt  ,0  . A mapping nEIf : is called continuous on I if

it is continuous at every point It 0 .

Definition 2.3. [14] A mapping nEIf : is called measurable on I if for any

 1,0 the multivalued mapping      tftf  is Lebesgue measurable.

Definition 2.4. [14] A mapping nEIf : is called integrably bounded on I if

there exists a Lebesgue integrable function  tk such that  tkx  for all

  Ittfx  ,0 .

Definition 2.5. [14] An element nEg is called an integral of nEIf : over

I if      
I

dttfAg 


for any ]1,0( , where    

I

dttfA  $(A) is the

Aumann integral [4].

Theorem 2.2. [14] If a mapping nEIf : is measurable and integrably

bounded then f is integrable over I .

Now, consider the Cauchy problem with small parameter

  ,)0(,, 0xxxtx  (2.1)

where 0 is a small parameter, nn ERR  : is a fuzzy mapping,

nEx 0 .

We interpret [2,5,6] the equation (2.1) as a family of differential

inclusions
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        

  00,,, xxtxttxtx  (2.2)

where the subscript  indicates that the  -level set of a fuzzy set is involved

(the system (2.2) can only have any significance as a replacement for (2.1) if the

solutions generate fuzzy sets (fuzzy R-solution) [8]).

In the articles [9] associate with the inclusion (2.1) the following

averaged differential inclusion

,)0(,)( 0xyyy  (2.3)

where     .0,
1

,lim
0









 

T

T
dtxt

T
xD (2.4)

Here the integral of the fuzzy mapping is understood in sense [14].

3. Main Result

In this article we consider the case when the limit (2.4) does not exist but

there exist fuzzy mappings nn ER   :, such that

    0,
1

,lim
0









 





T

T
dtxt

T
x , (3.1)

    0,,
1

lim
0









 

  xdtxt
T

T

T
 , (3.2)

where  , is the semideviation of the elements in the sense of fuzzy metric:

 
     

baBA
BbAa







 infsupsup,
1,0

.

Along with the differential inclusion (2.1) we will consider the following

differential inclusions:
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    00, xxxx    , (3.3)

    00, xxxx    . (3.4)

Theorem 3.1. Let in the domain   nEGxRtxtQ   ,|, the following

hold:

1) the fuzzy mapping  xt , is uniformly bounded with constant M ,

measurable in t , satisfies the Lipschitz condition in x with constant  ;

2) the fuzzy mapping  x is uniformly bounded with constant M , satisfies

the Lipschitz condition in x with constant  ;

3) uniformly with respect to x in the domain G the limit (3.1) exists;

4) for any GGx  '0 and 0t the R-solution of the inclusion (3.3) )(tR

together with a  -neighborhood belong to the domain G .

Then for any ],0(   and 0L there exists   0,0 L such that

for all ],0( 0  and  1,0  Lt

     0̂ˆ
StRtR  , (3.5)

where     00̂ˆ




 SS  for all  1,0 .

Proof. Let  1,0 is arbitrary. Divide the interval  1,0 L on the partial

intervals with the points Nmmi
m

iL
ti  ,,0,


. Let  tx be a solution of

the inclusion

     .0, 0xxxx   
 (3.6)

Then there exists a measurable selector      txtu  such that
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          .0,,, 01 xxtttdutxtx ii

t

t

i

i

 




  (3.7)

Consider the following function

          ,0,,, 0
1

1
11 xytttttutyty iiiii   (3.8)

where

 
    










1

1

1

)(min
i

i
i

i

i

t

ttyu

t

t

i dttuu
m

L
dttuu

m

L

 
. (3.9)

As in (3.9) the function being minimized is strongly convex and the set

   itx is compact and convex then there exists the point iu .

Let    iii tytx 1  , then for  1,  ii ttt we have

             iiiiii ttMtytxtxtxtytx   11 ; (3.10)

           iii ttMtytxh   
 1, . (3.11)

From (3.9), (3.11) follow that

          













 




1111

1,
i

i

i

i

i

i

i

i

t

t

i

t

t

t

t

i

t

t

dttydttxhdtudttu


            







 
 







2
,

2

1
1

1
1

ii
iii

t

t

i

ttM
ttdttytxh

i

i
















2

2

2 m

ML

m

L
i


 . (3.12)

Taking into account (3.7), (3.8) and (3.12) we get the following estimate:
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
















 iiii

m

L

m

ML

m

ML

m

L





 1

22 2

2

2

2

1

 1
2

11
2

1


























L

i

e
m

ML

m

L

m

ML 
. (3.13)

As

     
m

ML
dutxtx

t

t

i

i

 
  ,    

m

ML
tyty i  11 ,

so then using (3.13) we obtain

       3
2

1
2

1  LL e
m

ML
e

m

ML

m

ML

m

ML
tytx  . (3.14)

From the condition 2) of the theorem follows that for any 01  there

exists   0, 1
0  L such that for all 0  the inclusion holds

         0,
1

1

11






Sdty

L

m
ty

i

i

t

t

ii  


 . (3.15)

So there exists a measurable function        1
11 ,,,  iii ttttyttu


such

that

  1
1

1







i

t

t

udttu
L

m i

i

.

Consider the function

          0
1

1
111 0,,, xxtttdutxtx ii

t

t

i

i

   . (3.16)

Then from (3.15), (3.16) follows that

    1
11 Ltytx ii  .
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As

   
m

LM
txtx i  11 ,

we obtain the following inequalities:

    1
11 


L

m

ML
tytx  , (3.17)

         







 11

11 ,,, 


m

M
LL

m

ML
tyttxth i . (3.18)

From the inequality (3.18) and the way of choosing the function  tu1 we

get

       







 1

11 ,, 


m

M
Ltxttx ,

where    nn

Bb
RconvBRabaBa 


,,min, .

According to [7] there exists such a solution  tx of the inclusion (2.1)

that

       11

0

1
1 

















 

 L
t

t e
m

M
Lde

m

M
Ltxtx   . (3.19)

From (3.14), (3.17), (3.19) follows that

      LL eL
m

ML
etxtx  1

2
53  .

Choosing  


 ML
em L 53  and

LLe




2
1  , we get

     txtx
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and

       0


StRtR  .

Since  1,0 is arbitrary, we obtain      0̂ŜtRtR  . The

theorem is proved.

Theorem 3.2. Let in the domain Q the following hold:

1) the mapping  xt, is uniformly bounded, measurable in t , satisfies the

Lipschitz condition in x ;

2) the mapping  x is uniformly bounded, satisfies the Lipschitz condition in

x ;

3) uniformly with respect to x in the domain G the limit (3.2) exists;

4) for any GGx  '0 and 0t the R-solution of the inclusion (3.4) )(tR

together with a  -neighborhood belong to the domain G .

Then for any ],0(   and 0L there exists   0,0 L such that

for all ],0( 0  and  1,0  Lt

     0̂ˆ
StRtR   . (3.20)

The proof of the theorem is carried on similarly to the proof of the

theorem 3.1.

Remark 3.1. In the capacity of the mappings  x and  x one can use the

superior and inferior limit of the sequence of sets [10]:

        0,
1

,lim,0,
1

,lim
00


















 









T

T

T

T
dtxt

T
xDdtxt

T
xD .

The sets  x and  x are the maximum and the minimum with respect to

the inclusion among the sets  x and  x , that is for any  x and

 x the inclusions hold
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       xxxx   , .

Remark 3.2. If the limit (2.4) exists then      xxx   and from

theorems 3.1, 3.2 the theorem [9] follows.

4. Conclusion

It is also possible to use the partial averaging of the differential inclusions

with fuzzy right-hand side, i.e. to average only some summands or factors. Such

variant of the averaging method also leads to the simplification of the initial

inclusion and happens to be useful when the average of some functions does not

exist or their presence in the system does not complicate its research.
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