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Abstract 

Research interests have been focused on the concept of penalizing jobs both for being early 
and for being tardy because not only of modern competitive industrial challenges of 
providing a variety of products at a very low cost by smoothing productions but also of its 
increasing and exciting computer applications. Here, sequencing approaches of the mixed-
model just-in-time production systems is reviewed. In this note, realizing a need of critical 
review, a survey on the elegant mathematical models, methods and complexity of the mixed-
model just-in-time sequencing problem with an insight into the existing analytical literature 
is given. The established research results together with open problems and possible 
extensions are presented. 
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1. Introduction 

Mixed-model assembly lines with negligible change-over costs between the products 
allow manufacturing of different products of a common base product in evenly distributed 
sequences on the same line [12]. Just-in-time production system, which requires 
producing only the necessary products in the necessary quantities at the necessary times 
often uses mixed-model assembly lines [47]. The problem of finding a sequence of 
different products distributed as evenly as possible is called the mixed-model just-in-time 
sequencing problem (MMJITSP). 
 
This problem minimizes both the earliness and the tardiness penalties that respond to the 
customer demands for a variety of models without holding large inventories or incurring 
large shortages. This requires the production of each model in diversified small-lot 
instead of large-lots in a flow line. The MMJITSP has goals of keeping the rate of usage 
of parts as constant as possible and of smoothing the work overload on each workstation 
on the line [51]. The second goal was taken up in other two alternative sequencing 
approaches, mixed- model sequencing and car sequencing also. The mixed-model 
sequencing problem that considers other operational characteristics though limited to a 
small subset of them of the line also is to minimize sequence dependent work overload 
[6,12]. The car sequencing problem is to find a sequence of product copies to meet the 
demand for each copy of the product without violating the given rules for production 
options. The problem avoids work overload implicitly through the control of the work 
intensive product options [54]. 
 
This paper mainly focuses on the first goal of the problem. MMJIT system consists of a 
hierarchy of finite and distinct levels such as products, sub-assemblies, component parts, 
raw materials, etc. The sequence at the final level is crucial and affects the entire supply 
chain as all other levels are also inherently fixed because of the pull nature of the system. 
Minimization of the variation in demand rates for outputs of supplying processes is the 
output rate variation problem (ORVP) [34]. This is a multi-level problem. Minimization 
of the variation in the rate at which different products are produced on the line is the 
product rate variation problem (PRVP), a single-level problem [34]. Assumptions that the 
products require approximately the same number and mix of parts or that the parts of an 
output of a level other than the product level are dedicated to be assembled into a 
particular product (pegging) reduces ORVP into the PRVP [57]. Even special cases of the 
ORVP are computationally more challenging than the PRVP [34, 41]. The problem has 
been formulated as a non-linear integer programming with the objective of minimizing 
the deviation between the actual and the ideal production under the assumption that the 
system has sufficient capacity with negligible switch-over costs from one product to 
another and each product is produced in a unit time [47, 49, 48]. See also [32]. The 
solutions to this problem have been referred as level, balanced or fair sequences. 
 
Since the problem has been dealt with in a great number of papers with heuristics and 
pseudo-polynomial exact solution procedures, it would be worth to have a synthesis of 
them. A number of survey papers has been appeared [34, 21, 65, 12]. A recent survey 
performs a systematic record of the academic efforts pertaining to the problem [12]. 
Moreover, another one reviews the problem to help bridge the gap between the academic 
literature and industry practice [65]. This survey covers almost complete works of the 
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problem including unresolved cases focused on mathematically interesting base model 
of theoretical value together with real world applications. 
 
The plan of the paper is as follows. Section  reviews the mathematical model. In 

Section , sequencing procedures have been studied. Sections study in detail the 

level scheduling problem with a goal of uniform usages of all parts. Section  relates the 

MMJITSP to the apportionment problem. Sections  and  summarize production 

smoothing with arbitrary non-zero processing time and setup time, and smoothing the 
work overload, respectively. The last section concludes the paper. 
 
2. Mathematical Model Formulation 
 
The system consists of  different production levels ,  with product level . 

Let  be the demand for part  of level , ,   the number of different 

parts of level . By , we represent the number of total units of part  at level  

required to produce one unit of product ,  and then 

, the dependent demand for part  of level  determined by . 

Clearly,  for , and  otherwise. Let  be total part 

demands of level  with demand ratio  and then  for 

. The time horizon in the product level is partitioned into units and there 

will be  complete units of various products  at level  during the first  units. This 

introduces the concept of a stage. The pull nature of the system implies that the lower 
level parts are pulled forward according to the need of the product level. 
 
Let  be the quantity of part  produced at level  in the time units  through and 

 be the total quantity produced at level  during these time units. At 

level , . The required cumulative production for part  of level 

 through  time units will be . Consider  unimodal 

symmetric convex non-negative function with minimum  at , . Then the 

mathematical model for the ORVP [49, 39], is  
                      

minimize                 

 

minimize                

 

               subject to     ,        ;  

                                                                      ;             
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                                      ,                ;  

                                                                

 

                                      ,                      

 
                                      ,        ;  

                                                               

 
                                      , ,                     

 
                                      , integer, ,         ; ; 

                                                                                                         

 
Constraint  ensures that the necessary cumulative production of part  of level  by 

the end of time unit  is determined explicitly by the quantity of products produced at 

level . Constraints  and  show the total cumulative production of level  and 

level , respectively, during the time units  through . Constraint  ensures that 

the total production of every product over  time units is a non-decreasing function of . 

Constraint  guarantees that the demands for each product are met exactly. 

Constraints , ,  ensure that exactly one unit of a product is scheduled 

during one time unit in the product level. 
 
Use of weights in the model is an essential feature. Weighted case of the problem is 
formulated with appropriate weights . The selection of weights will be based on the 

total production at various levels, the relative importance of having good schedules at the 
various levels and the numerical values assigned to the weights [49, 41]. Weights can be 
used to smooth the variability and to prevent lower-level parts to be dominant over higher 
level parts in the measures at different levels. Use of weights to a part shows the relative 
importance of the part that will affect the sequencing of the product into which that part is 
to be assembled [57]. 
 
The mathematical model for the ORVP reduces to the mathematical model for the PRVP 
when only the product level is considered and the superfluous subscript  is dropped out. 

 
This model minimizes the perennial objective functions, the bottleneck measure of 
deviation  that produces smooth sequence in every time unit and the total measure of 

deviations  that produces smooth sequence on the average [55]. In particular, 

 
 and  
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 and  

 
in PRVP denote some particular objectives. We denote suffix  for the absolute deviation 

objective and suffix  for the square deviation, for example, problem  for the problem 

PRVP with the objective function  and the constraints. With an appropriate weight , 

, the weighted problem is formulated. 

 
An alternative objective for the minimization of the deviation between the times at which 
a unit of a product be actually produced and the time at which the unit of the product is 
needed to be produced is intuitively similar to the PRVP [28]. 
 
3. Sequencing Procedures 
 
3.1. Heuristic approach 
 

The ORVP is computationally more challenging. The problem   is NP-hard in the 

ordinary sense as the NP-hard scheduling problem, around the shortest job reduces to the 
ORVP [34] and the problem Fea with only two levels is NP-hard in the strong sense as 
the strongly NP-hard -partition problem transforms into the ORVP in pseudo- 

polynomial time [41]. However, a number of heuristics gives rise to suboptimal solutions.  
 
The goal chasing methods GCM I and GCM II used in Toyota [51], see also [32], 
construct a sequence filling one position at a time from first slot to the last one. The 
variability is considered at the sub-assembly level whereas the variability at the product 
level is ignored. GCM II compared to GCM I represents a decrease in computational time 
because the sum is formed only on the components of a given product in GCM II [59]. 
GCM I and GCM II are myopic. A myopic polynomial heuristic, extended goal chasing 
method (EGCM) that considers more levels, adopts GCM I and GCM II as a special case 
[49]. The myopia lies in the fact that it only takes one step. Taking two steps into account, 
the myopia can be reduced [9]. 
 
Three algorithms and two heuristics are formulated in [47]. The algorithm  and the 

algorithm  with heuristic 1 (MA3H1) consider the product rates, not the parts usage 

rates. It is a one-stage myopic heuristic with complexity O(nD). The algorithms may not 
yield feasible sequence but if feasible it is optimal, too. The algorithm  with heuristic  

(MA3H2) is the improved two-stage heuristic with complexity O(n2D). MA3H2 is of 
highest quality for feasible solutions among GCM I, GCM II, MA3H1 and MA3H2 [59, 
25]. 
 
Time spread (TS) heuristic employs similar procedure as GCM1 with function in which 
time required to assemble products are applied. Comparison of different methods  through 
simulation analysis show that TS and MA3H2 seem to be effective [60]. 
 
Inman and Bulfin’s earliest due date (EDD) rule based on ideal time of production of each 
product [28], Ding and Cheng’s two-stage algorithm that minimizes the variation of 
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the two stages [22, 23] and MA3H2 heuristic obtain good solutions. Modified forms 
of these, with appropriate weights, are useful alternatives for frequent updates of 
sequencing [15]. 
 
A local search heuristic that attempts to swap the order of assembly of a pair of products 
provides near-optimal sequence for realistic-size problems in a reasonable time. It may be 
extended considering release date and due date constraints [27]. 
 
The problem with a bicriterion objective of part usage and setup time has inversely 
correlated objective values. An efficient frontier, where simultaneously maximization of 
feasibility and minimization of setup is desired, is exploited. Such frontier is explored 
using heuristics such as tabu search, simulated annealing, genetic algorithm, ant colony 
optimization approach, beam search heuristic, artificial neural network etc [44, 45, 16, 
43]. 
 
Suboptimal solutions using heuristics, for example, tabu search and branch and bound to 
the problem with the objective for parts usage and work load [48, 60], and [24]; parts 
usage and line length [6]; parts usage and line stoppage, [69, 32] can be obtained.  
 
3.2. Dynamic programming 
 
Let the demand vector at level  be  and the states in a schedule be 

 with   where  is the cumulative production of 

product , . Let   be the unit vector with   entries all of which are zero 

except for a single  in the ith row, and  and Ω 

 be the matrices of dimension , . 

Let  with the maximum norm ,  and 

  with the Euclidean norm  be the maximum of 

absolute deviation and the sum of square deviations of actual production from the ideal 
production over all parts and products, respectively, where  is the amount of product 

produced. Define ø  and Ф  to be the minimum of the maximum absolute 

deviation and the minimum of the total square deviations respectively for all parts and 
products over all partial schedules of .  

 
The DP recursion for ø  is 

              ø , 

              ø  

 with ø   and  for any state . 

 
The DP recursion for Ф  is 
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         Ф  

with 
              Ф  and   

for any state  [41]. 

 
In any state ,  can have any values . The space and time complexities of 

the procedures are  and , respectively 

[50]. The number of feasible schedules for any problem instance is   which is 

considerably larger than the number of states in the DP recursion. 

 shows that the DP algorithm is effective for small 

number of products even with large number of copies. During the enumeration process, 
an excessive amount of time or that of space is reduced by using some fast heuristic as a 
filter which eliminates any state from DP’s state space that would lead to no optimality 
[41]. If the heuristics yield near-optimal sequences, then the state space size could be 
reduced. The DP algorithm progresses through the state space in the forward direction of 
increasing the cardinality as the procedure generates all states  with  before  

 for all . 

 
3.3. Assignment method 
 
The problem can be solved pseudo-polynomially transforming the problem into an 
equivalent assignment problem. Calculation of the assignment costs is based on the level 
curves  , ;  and the positions in which each 

copy  of product , ,  is sequenced. 

 

If all copies of product  are sequenced at their ideal positions , the ceiling 

of the unique crossing point satisfying , 

, the product  will contribute the cost  to the total cost of 

the solution and an optimal sequence is obvious. Sequencing the products at their ideal 
positions minimizes the problems  and , however, leads to infeasibility when more 

than one copy  compete for the same ideal position in the sequence. Competition occurs 
in general case. Higher priority is given to   over  whenever  <  to avoid competition 

and  is assigned to a position , .  

 
The new assignment contributes additional cost   where 
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with  

   

              . 
 
The assignment problem equivalent to the problem  is, [40], 

     

 min                           

 

              subject to          ,                                 

                 ,         ;        

 
where if  is assigned to time unit  and  otherwise 

 
Let , be the set of the 

assignment of  to . A set  is  -feasible if the following constraints hold. 

: For each , , there is exactly one  

such that , i.e., exactly one copy is produced at one time unit. 

: For each , there is exactly one ,  

such that , i.e., each copy is produced exactly once. 

: If  and   then , i.e., lower indices copies are 

produced earlier. 
 
Constraints  and  are related to the assignment problem. Constraint  imposes an 

order on copies of a product. 
 
Theorem 3.1 [40] For any feasible ,  

 

 
The result becomes an inequality without . An optimal solution cannot be obtained by 

simply solving the assignment problem since  is not the assignment type. 

 

Theorem 3.2 [40] If   satisfies   and , then   satisfying  with 

 can be determined in  time. Moreover, each copy in the sequence 

  from  preserves the order that it has in the sequence  from . 
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Since there are  values   values  and each takes   time to 

calculate, the Hungarian method takes  time to solve the assignment problem with 

 nodes. The assignment can be made order preserving in  time. Hence, an 

optimal solution to the problem G can be obtained in  time, see [40]. A number of 

algorithms solve the assignment problem of the problem  [52]. 

 
The approach for the problem  is applicable in every - norm and particular to -

norm, see [21]. 
 
The corresponding assignment problem equivalent to the problem  is 

 

                  min                       

 
subject to the constraints  and  where 

        
 

The assignment costs grow to the left and to the right from the ideal positions  in 

the assignment matrix , [10]. One ideal position exists in each row of the matrix, 

however, there exist two ideal positions in the case of a competition. 
 
The problem is solved by means either of specific bottleneck assignment algorithms or as 
a sequence of assignment problem with some modifications such as use of a binary matrix 
instead of the bottleneck assignment matrix and application of bisection search to find the 
optimal bottleneck value [10]. Optimal solution can be obtained in  time. 

 
The bottleneck assignment costs  for which , 

, can be calculated in time  but it remains open 

whether the problem can be solved in . If it exists, it would be better than the 

existing solution procedures [38]. 
 
A cyclic sequence substantially reduces the time complexity. Such sequences exist in the 
problem  [47, 49]. The cyclic sequences are optimal, too. A concatenation  of  

copies of an optimal sequence s for the instance  of the problem is 

optimal for ,  [36]. It builds a sequence for a longer time 

horizon. Such a sequence can be found under the assumption  

where  is convex and symmetric with minimum  at  [11]. 
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3.4. Perfect matching method 
 
The problem  is solved by reducing it to an order-preserving perfect matching problem 

via single machine scheduling release/due date decision problem [55]. The perfect 
matching problem is constructed in a -convex bipartite graph  

with , set of the  copy of product , 

, the starting times and the edge set  with the earliest starting time 

 and the latest starting time for  defined as 

. For a given bound  and the level 

curves , , the values 

and ,  are calculated in time  as the 

unique integers  and  [13]. 

 
A modified version of earliest due date (EDD) rule with complexity  in -

convex bipartite graph  finds an order-preserving perfect matching for the 

upper bound  [26]. 

 

A stronger upper bound has been obtained for the problem . If  be any optimal value, 

then   where ,  [13], and 

 [62]. Therefore, it holds   

for . The optimal value  cannot be less than  for even  since   

and cannot be less than  for odd   since  [20]. It is natural to seek 

instances with optimal value less than . 

 
It has been shown that only the standard instance i.e. the instance with , 

, has optimal  if and only if 

 [35, 14]. It came into existence as the small deviations 

conjecture [13]. If  , all products 

must be sequenced in the ideal position  for each , which happens if  is 

divisible by each . This geometric proof exploits a natural 

symmetry of regular polygons inscribed in a circle of circumference  such that each 

Archive of SID

www.SID.ir

www.SID.ir


Tanka Nath Dhamala, Shree Ram Khadka/ Iranian Journal of optimization 1(2009) 266-290 276

polygon corresponds to a different product having  corners for product  at  

points on the perimeter of the circle. Consequently,  demands are the first  non-

negative powers of  [35]. 

 
The small deviations conjecture is shown to be true as a consequence of the Fraenkel’s 
conjecture for symmetric case using a fact that a solution to the problem  with 

for ,  is periodic, symmetric and balanced word [14]. 

The Fraenkel’s conjecture for symmetric case states that a periodic, symmetric and 

balanced word with , exists if and only if  [14]. 

 
A -balanced word on a finite set  is an infinite sequence  with 

 such that every two subsequences of equal length consist of only those 

letters whose number of occurrences in each subsequence differ by at most a positive 
integer   (See [63]). Note that -balanced word is a balanced word. Consider a finite 

word  on  of length  with  occurrences of a letter  and , the 

rate of letter  with .  is said to be symmetric if , a mirror 

reflection of . An infinite word  is periodic if for some . 

 
For a sequence  with maximum deviation , any infinite periodic word , with period 

 is -balanced, -balanced and -balanced on each product , if   and 

, respectively [29]. The inclusions are proper [21]. 

 
Unfortunately, the -balanced words are unlikely for most rates to exist. There exists an 

optimal sequence for the problem  in the set of all -balanced words. However, it 

remains unresolved whether there always exists a -balanced word that is optimal for the 

problem . The challenging problem of balanced words in practice is to construct an 

infinite periodic sequence over a finite set of letters with given rates and distributed as 
evenly as possible. 

Though, only the instance ,  has  for the 

problem , for , infinitely many instances with  exist i.e. the optimal 

value of the problem  is less than  if and only if one of demands  or  is odd and 

the other even [14]. A sequence with distances  and  for product  with demand 

 and  and  for product  with demand  is optimal for two product case. 
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This procedure solves both the problem  and the response time variability problem 

for , which is not true in general for . The response time variability problem 

minimizes the variability of time for which clients, events, jobs or products wait for the 
next turn in obtaining the resources necessary for their advance. This problem intends to 
utilize the resources so as to ensure a fair sharing of common resources between the 
products which requires to be evenly distributed such that the occurrences in any two 
consecutive items of the same product is to keep at constant distance as much as possible 
all the time. The general case of the problem is NP-hard [17]. This result naturally 
motivates to look at other possible common solutions with respect to different objectives. 
 
The EDD algorithm matches each ascending  to the unmatched  with the 

smallest  Since  and  are strictly monotonic increasing for 

consecutive copies of each product [55] and  cannot be less than  

with  [37] the algorithm ensures the perfect matching to be order-preserved. 

 
The weighted problem can analogously be reduced to the order-preserved perfect 
matching problem [57]. Heavy weightage for particular copies of a product restricts the 
time window  and increases the separation of consecutive copies of that 

product in the sequence.  and  are calculated as the integers 

 and . 

 
An order-preserved perfect matching gives rise to a feasible solution. 
 
The necessary and sufficient condition for a feasible solution to the problem  is the 

following. 
 
Theorem 3.3 [13] The problem  has a feasible solution if and only if for all 

 with and, 

  and 

. 

 
The theorem tests the feasibility of  in time  though less efficient than  

time and of a pair ,    in  time [38]. 

 
The perfect matching using a certain bound obtained through a bisection search in the 

interval  yields an optimal sequence in  time. The lower 

bound   is tight [55]. 
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Since the deviations are multiples of  and the upper bound is , the bound for 

the optimal value can be only   with  [42]. This fact can be 

implemented to calculate possible optimal values for the problem   only for these 

values. The optimal sequences of an instance  obtained at 

bound  are and 

, here the  and the 6th positions are 

swapped. 
 
An optimal sequence for the weighted problem is obtained as follows: 
 
Theorem 3.4 [57] An optimal sequence for the weighted problem can be determined 
when a bisection search is performed in the interval in 

exact pseudopolynomial time , where  is a positive integer 

constant that depends on the problem data. 
 
The exact complexity of the problem  still remains open. The problem  has been 

proved to be Co-NP but remains open whether it is Co-NP-complete or polynomially 
solvable [13]. Observation of the input size  and the 

involvement of  variables and  constraints in the model indicate that an 

expectation of a polynomial algorithm for this problem seems far from trivial. 
 
There exists cyclic optimal sequence for the problem   [57]. Let  be a factor of  

and  with  for product . Each copy of product is labeled as 

 where and , the  period of copies of 

product  that consists of   copies of product . There will be  such periods for each 

product. If all of one period’s early (late) starting times are calculated, then the early and 
the late starting times for all copies in all periods can be calculated from these values. 
When , the time required to calculate the starting times can be 

reduced by a factor of . 

 
Theorem 3.5 [57] If , , then the problem  

consists of  repetitions of the optimal sequence. 

 
The problem  can be represented as a complete convex bipartite weighted graph on  

. Since each  can be produced at any instant , it is clear that 

  and . The cost  for  at  is taken as the weight for 

the edge . The problem is to find a perfect matching with minimum sum of the 

weights [56]. 
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Theorem 3.6 [42] A sequence s for the problem  is optimal if and only if there is a 

minimum weight perfect matching  with a weight function such 

that  and 

. 

 
Let us say an incomplete convex bipartite graph on  if weights are attributed to only 

those edges  of which with . This 

substantially reduces the number of weights to be calculated. A -bounded optimal 

solution for the problem , if exists, could be obtained in  time, since 

 holds for  [56]. 

Theorem 3.7 [33] The sequence optimal to the problem  with , , and 

 for the incomplete graph is also optimal to the problem  for the 

complete graph. 
 
This result cannot be generalized for non-identical cost functions in . As an 

example, the instance with the cost 

functions, 

 where 

 shows that  will not hold for some positions [33]. 

 
But the existence of such a solution is rarely possible. The question of determining 
minimum  such that the optimal solution to the problem  is -bounded remains 

unanswered [21]. It is shown that the upper bound on the optimal value of the problem  

is  though the bound is not tight. However, the lower bound for the problem  is 

 [1]. Note that a solution is said to be -bounded or -feasible if the 

deviation is less than a given bound . 

 
The perfect matching method can also be applied to the generalized pinwheel scheduling 
problem or the Liu-Layland periodic scheduling in hard real-time environments, see [37]. 
The generalized pinwheel scheduling problem for  pairs of positive integers 

 is to find an infinite sequence  on finite set 

 such that ,  and any subsequence of s consisting of  
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consecutive elements of  contains  at least  times, . The solution 

procedure to the problem  with  and the rates ,  yields 

a generalized pinwheel schedule for the instance  if 

 [38]. The Liu-Layland periodic scheduling problem is to find an infinite 

sequence  on a finite set  such that ,  and a 

preemptive and periodic job  occurs exactly  times on any subsequence of , 

consisting of  consecutive elements of  with ,  where  and  

are the run-time and request period for job . The solution to the problem  with  

and rates ,  is a periodic schedule [38]. 

 
3.5. Simultaneous optimality 
 
Study of finding solutions that minimize a number of objective functions simultaneously 
is useful. Such solutions not only reduce time complexity of the problem but also are 
more applicable in practice. 
 
A Pareto algorithm that determines all Pareto optimal sequences for the bicriterion 
sequencing problem with the objectives  and  exist. The algorithm determines an 

order preserving perfect matching with . Then a minimum weight order-

preserving perfect matching with the weight  for the edge , 

 is determined. The corresponding 

production sequence is a Pareto optimal sequence. A Pareto optimal solution can be 
determined in  time and all Pareto optimal solutions in 

 time [56]. 

 
Let  be the set of all -feasible sequences. The two problems are -equivalent if both 

have the same set of optimal sequences on . The problems  and  on  have the 

same cost  for  [42] and are -equivalent [18, 19]. The 

assumption in [33] that the -equivalence is due to symmetry and convexity of the 

objectives is not true. The instance  with the function  
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is a counterexample [18], where  is optimal value to the problem . An optimal 

sequence for the problem  in  is optimal for the problem  in , too. With this, the 

problem  can be solved by means of solving the problem  in . It is advantageous 

for the complexity since the conversion of the floating point numbers to integers of 
absolute penalties required is smaller in magnitude than that of the square penalties [33]. 
An optimal solution in  to the problem  may not be optimal to the problem , [18, 

19]. If the problem  has no optimal solution in , the optimality is not guaranteed, 

however, it provides a lower and an upper bounds for the optimal solution to the problem 
. The problems  and  may not have optimal sequences in  [18]. 

 
4. The PRV and Apportionment Problems 
 
The apportionment problem, though it appears in different situations, has been studied as 
a problem for the assignment of seats of a legislature to states or parties and applied in 
real sense [58, 5, 37]. There exists a connection between the PRVP and the apportionment 
problem [8, 30]. 
 
In divisor method of apportionment, a divisor function , a monotone real-valued 

function defined over the set of non-negative integers, is defined as  

where  is an integer for which there exists no pair of integers  and   with 

  and .  Suppose that a cumulative seats  have been 

apportioned in the stages  through . Then a seat is apportioned to a state  in the stage 

 when ,  with  implies  , where  

and  are the populations of states  and  respectively. The time complexity of the 

procedure is  [4]. A divisor method is said to be parametric if 

.  Adams, Condorcet, Webster and Sainte-Lague and 

Jefferson and d’Hondt use this method with ,  0.5, and , 

respectively [3]. 
 

The EDD rule in [28] coincides with the parametric method of apportionment with  

 [8]. The parametric method is cyclic [3]. The method, developed by [55] to break 

a tie by choosing the smallest  for unmatched  to sequence at while 

solving the bottleneck PRVP, is the parametric method of apportionment with  
 [30]. The sequences of three products with demands  and 

 obtained by parametric method with  =   are the same the perfect matching 

method with yields. 
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It is noteworthy that the apportionment problem is more directly related to a problem 
that determines the number of units of products to produce in such a way that the 
proportions are as close to the ideal proportions as possible when total number of units are 
given [8]. 
 
5. Production Smoothing Problem 
 
The assumption that allows setup and arbitrary processing times forces the problem to be 
the production smoothing problem, a two-phase problem. The first phase is the batching 
problem that determines batch size and the number of batches of the products. The second 
phase is the sequencing problem that sequences the batches. 
 

A takt-time , the ratio of the time horizon  to the number of time-buckets  is 

used as a key factor. A batch (a copy or several copies) of a product is produced during a 

takt-time. Let  , , batches of product  be produced during   

such that , where  and  are the setup and the processing time of 

product . 

 
The multi-objective non-linear integer programming model of the problem [38], is 
 

                  minimize                    

                  maximize                            

                  subject to 
                             

                                                                                                     

                                                                                                         

                                                                                                       

  

The constraints  and  show that each product is assigned in  batches and 

the constraints  and  ensure the feasibility of . 

 
Recently, a Pareto optimal solution has been developed [38]. The solution procedure 
determines  in  time and sequence of the batches is determined in  time 

by transforming the problem into the assignment problem. 
 
The cost  of assigning  batch of product  to the position is 
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                     if ,    

       0   if  

       if  

with    , if , 

         , if ,  

and  , the ceiling of the unique crossing point satisfying  

, . 

 
Some heuristics and meta-heuristics appear in the literature though the batching problem 
is proven to be NP-hard [66]. 
 
A dynamic programming for the exact solution has been explored. However, its use in 
real environment due to its computational time is impractical [68]. The dynamic 
programming has been extended to a bounded dynamic programming procedure to solve 
large-size problem within practical times. Some heuristics, meta-heuristics and hybrid 
meta-heuristics such as north-east solution search, parametric heuristic search, strategic 
oscillation, scatter search, path relinking, robust tabu search are also introduced to solve 
the problem [67]. The problem has been studied on a single machine in [67] and on the 
flow shop in [68]. 
 
6. Smoothing Workload Problem 
 
The problem of smoothing the workload on each workstation on the line is a secondary 
concern of the MMJITSP. This case has drawn attention from researchers and 
practitioners as MMJIT sequencing that deals with the goals of keeping a constant rate of 
parts usage and of smoothing workload. 
 
By , we represent the assembly time required for a unit of a product  on 

a workstation . Clearly, the assembly time required for  unites of 

product  is . Then, let  be the total assembly time on  over 

planning horizon . Let  be the cycle time, where  is the total 

demand. Ideally, the workstation  should spend  time on product  during the 

periods  through . However, the actual time required is , where , 

 be the cumulative production of product  during the same 

periods. The deviation between the actual and the ideal assembly times on workstation  

incurs either idle line or work overload on the line. The objective of the problem is to 
minimize the sum of the deviations on all the workstations of the line.  
 
The mathematical model of the smoothing problem [34], is 
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              minimize  

 
subject to .  is non-negative unimodal convex function having  at . 

 
The model assumes all products may not have the same operation time at any workstation 

on the line. The problem to minimize  subject to the 

constraints  shows that the smoothing workload problem has the same 

form of the PRVP [34]. A model of the problem similar to the PRVP is also formulated in 
[46]. The solution to this problem can be obtained using EDD rule in [28]. Another model 
is in existence based on the concept that the worker of a workstation stops the conveyor 
of the products if incompletion of the operations occur within the work zone. Two 
algorithms branch and bound for small size problems and simulated annealing for large 
size case solve the problem [64]. 
 
A pseudo-polynomial solution procedure with complexity  exist to solve the 

problem with a finite number of workstations, the displacement time and the time the 
worker needs to go from one finished product to another one entering the station. See [7]. 
A tabu search solves the problem with utility work (work done by the utility workers), 
equivalent to minimizing the work overload, for several products and workstations [53].  
 
A number of papers studies joint problem that simultaneously addresses both parts usage 
and work load goals. See, for example, [2, 61]. A dynamic programming (DP) is effective 
for small number of products though with large number of copies [50]. For large 
problems, two myopic heuristics ’one-stage’ heuristic with complexity  that fills 

one position at a time and its improved case ’two-stage’ heuristic with complexity 
 exist [50, 48]. The joint problem as an assignment problem gives rise to optimal 

sequence for small input size [31]. 
 
7. Concluding Remarks 
 
The mathematical models for MMJITSP and different sequencing approaches developed 
till date have been analyzed. The MMJITSP with the goal of keeping constant rate of 
usage of parts is focused. The study shows that the problems have real world exciting 
applications as well as interesting mathematical features of theoretical value. We 
explicitly explore, with justification of the ground for future research, the questions which 
still remain open and are challenging. 
 
The problem, under the assumption that the products require approximately the same 
number and mix of parts or the pegging assumption (single-level) is solvable. A pseudo- 
polynomial algorithm of the assignment problem is applicable to the problem . The 

approach can also be applied to the bottleneck PRVP with necessary modification. 
 
The other approach for solving the problem  is the binary search for -feasible 

sequence on perfect matching in bipartite graph. It is also of pseudo-polynomial 
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complexity. This property is applicable to other general convex symmetric 
nonnegative functions also. The bound  is sufficient for searching an optimal 

solution to the problem  and similar results hold for the problem . 

 
The approach applied to the incomplete bipartite graphs to solve the problem  is 

developed. But it is yet unknown what should be the minimum size of  such that the -

bounded solution guarantees an optimal sequence. Looking for a good  is appealing as 

this would reduce the complexity. 
 
Despite much effort to solve the PRVP with pseudo-polynomial complexity on the input 
size of the demands, the exact complexity of the single-level problem still remains open. 
The problem  has been proved to be Co-NP but remains open whether it is Co-NP-

complete or polynomially solvable. To have a conclusive statement, it would be one issue 
of the future research. Analyzing the work-in-progress, solution of this problem with 
polynomial time complexity seems unlikely to exist. 
 
Since the PRVP is a group of single-objective problems and the properties of optimal 
sequences may differ significantly for different objective functions, obtaining common or 
closely related optimal sequences to different objective functions would significantly save 
the complexity cost. 
 
The ORVP even with two-levels are strongly NP-hard. Therefore, an improvement of 
existing approximation algorithms, for example dynamic programming or local search 
techniques would contribute to the research.  
 
Existence of cyclic optimal sequences also considerably reduces the computational time. 
This problem has been resolved for the PRV case. However, the conjecture whether 
cyclic sequences to the ORVP are optimal is still open. 
 
The elegant algebraic concept of balanced words introduced in this field is relatively new. 
The -balanced words cannot be obtained for most rates, but the set of all -balanced 

words consists of optimal sequence for the problem . Minimality of this set is unknown 

and enumeration of this set for optimality is expensive. It is still unsolved whether the set 
of all -balanced words is sufficient for an optimal sequence for the problem . 

Characterization of balanced words to the other MMJITSP would strengthen the concept 
of balanced words in obtaining balanced sequence. 
 
The production smoothing problem as a variant of the MMJITSP with arbitrary nonzero 
processing and setup times helps bridge the gap between the theoretical achievements and 
industrial practice. Study of this problem in a variety of manufacturing environments 
for example shop scheduling systems is an important research area. 
 
The relation between the MMJITSP and well established apportionment problem found 

Archive of SID

www.SID.ir

www.SID.ir


Tanka Nath Dhamala, Shree Ram Khadka/ Iranian Journal of optimization 1(2009) 266-290 286

in the literature shows that the parametric method with     seems to be closely 

related to Inman and Bulfin’s EDD algorithm and the perfect matching method though no 
formal proof is in existence. 
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