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Abstract

Research interests have been focused on the cosicpphalizing jobs both for being early
and for being tardy because not only of modern aitipe industrial challenges of
providing a variety of products at a very low cbgtsmoothing productions but also of its
increasing and exciting computer applications. Heeguencing approaches of the mixed-
model just-in-time production systems is reviewkdthis note, realizing a need of critical
review, a survey on the elegant mathematical modedshods and complexity of the mixed-
model just-in-time sequencing problem with an ihsigto the existing analytical literature
is given. The established research results togetvidr open problems and possible
extensions are presented.
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1. Introduction

Mixed-model assembly lines with negligible changefcosts between the products
allow manufacturing of different products of a coombase product in evenly distributed
sequences on the same line [12]. Just-in-time mtimlu system, which requires
producing only the necessary products in the nacgspiantities at the necessary times
often uses mixed-model assembly lines [47]. Theblera of finding a sequence of
different products distributed as evenly as possibicalled the mixed-model just-in-time
sequencing problem (MMJITSP).

This problem minimizes both the earliness and éndiness penalties that respond to the
customer demands for a variety of models withoutling large inventories or incurring
large shortages. This requires the production ahemodel in diversified small-lot
instead of large-lots in a flow line. The MMJITSBshgoals of keeping the rate of usage
of parts as constant as possible and of smoothiagvbrk overload on each workstation
on the line [51]. The second goal was taken up themotwo alternative sequencing
approaches, mixed- model sequencing and car seiggerdso. The mixed-model
sequencing problem that considers other operatiomatacteristics though limited to a
small subset of them of the line also is to minengequence dependent work overload
[6,12]. The car sequencing problem is to find ausege of product copies to meet the
demand for each copy of the product without violgtthe given rules for production
options. The problem avoids work overload implicithrough the control of the work
intensive product options [54].

This paper mainly focuses on the first goal of pheblem. MMJIT system consists of a
hierarchy of finite and distinct levels such asduats, sub-assemblies, component parts,
raw materials, etc. The sequence at the final lvetucial and affects the entire supply
chain as all other levels are also inherently fikedause of the pull nature of the system.
Minimization of the variation in demand rates fartputs of supplying processes is the
output rate variation problem (ORVP) [34]. Thisaignulti-level problem. Minimization
of the variation in the rate at which different guats are produced on the line is the
product rate variation problem (PRVP), a singleslguoblem [34]. Assumptions that the
products require approximately the same numbernairdbf parts or that the parts of an
output of a level other than the product level deglicated to be assembled into a
particular product (pegging) reduces ORVP intoRR/P [57]. Even special cases of the
ORVP are computationally more challenging thanRfR/P [34, 41]. The problem has
been formulated as a non-linear integer programmaiitly the objective of minimizing
the deviation between the actual and the idealywtioh under the assumption that the
system has sufficient capacity with negligible sWibver costs from one product to
another and each product is produced in a unit {#Te 49, 48]. See also [32]. The
solutions to this problem have been referred aal |éalanced or fair sequences.

Since the problem has been dealt with in a greatben of papers with heuristics and
pseudo-polynomial exact solution procedures, it lkdae worth to have a synthesis of
them. A number of survey papers has been appeddked®], 65, 12]. A recent survey
performs a systematic record of the academic effpdrtaining to the problem [12].
Moreover, another one reviews the problem to helige the gap between the academic
literature and industry practice [65]. This survawers almost complete works of the
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problem including unresolved cases focused on madltieally interesting base model
of theoretical value together with real world apgtions.

The plan of the paper is as follows. Sectinreviews the mathematical model. In
Section3, sequencing procedures have been studied. Sedisng study in detail the
level scheduling problem with a goal of uniform ges of all parts. Secticé relates the

MMJITSP to the apportionment problem. Sectidhsand & summarize production

smoothing with arbitrary non-zero processing tinmel &etup time, and smoothing the
work overload, respectively. The last section codek the paper.

2. Mathematical M odel Formulation

The system consists &fdifferent production level, I = 1, ..., L with product levell.
Let d;; be the demand for paitof level I, i = 1,...,n;, n, the number of different

parts of levell. By t.;,, we represent the number of total units of past level I
required to produce one unit of producp, @ =1,..,1ny and then

d, = E;'—zi tyy 1, the dependent demand for parof level I determined by, -

4

Clearly, t,;,, =1 for { =p, and 0 otherwise. LetD, = Ef‘éi d,, be total part
demands of levell with demand ratior;; = % and then E?;i’r“: 1 for

1l =1, ..., L. The time horizon in the product level is partital intol}, units and there

will be k complete units of various producisat level 1 during the firstk units. This

introduces the concept of a stage. The pull nadfirlhe system implies that the lower
level parts are pulled forward according to thednekthe product level.

Let x;;,. be the quantity of part produced at level in the time unitsL throughk and

Vi = E":l i, be the total quantity produced at levetiuring these time units. At

level 1, vy, = X2,

X, = k. The required cumulative production for panf level

I = 2 through k time units will bex,;, = 2 %, t,;,x, .. Considerf, unimodal

4

symmetric convex non-negative function with minim@mat 0, i = 1, ..., 71;. Then the
mathematical model for the ORVP [49, 39], is
minimize [F = mazx, , . fi (% — Vi7i)] (2.1)
minimize [G = Ei;_ Xy E“=1 Filrge — yemi)] (2.2)
3

subjectto Xy = LIy fptug, = L my
I

=1,.,Lk=1..D (2.3)
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Voo = B x =2, L k=1,..D,
(24)
Vi = E:~_1J51.3*_1-1.:‘: =k k=1,..D (2.5)
Tt = Tpiip—1) p=L..n;k=1...D0
(2:6)
Tp1p, = dp1 Xy =0, =101y (2.7)
g = O integer,, =1 ...n;1=1..1L
k=1...D04 (2.8)

Constraint( 2.3 ) ensures that the necessary cumulative producfiparoi of level ! by
the end of time uni; is determined explicitly by the quantity of protsi@roduced at
level 1. Constraints( 2.4 ) and{ 2.5} show the total cumulative production of levednd
level 1, respectively, during the time unils through¥. Constraint( 2.6 ensures that
the total production of every product ovietime units is a non-decreasing functionkof
Constraint { 2.7 guarantees that the demands for each product ate emactly.

Constraint$ 2.5, (2.6], (2.8) ensure that exactly one unit of a product is scheet
during one time unit in the product level.

Use of weights in the model is an essential featWeighted case of the problem is
formulated with appropriate weights;;. The selection of weights will be based on the
total production at various levels, the relativgpartance of having good schedules at the
various levels and the numerical values assignébeaveights [49, 41]. Weights can be
used to smooth the variability and to prevent leleeel parts to be dominant over higher
level parts in the measures at different levels bfsweights to a part shows the relative
importance of the part that will affect the sequegof the product into which that part is
to be assembled [57].

The mathematical model for the ORVP reduces tarththematical model for the PRVP
when only the product level is considered and theegluous subscripk is dropped out.

This model minimizes the perennial objective fuois, the bottleneck measure of
deviation F' that produces smooth sequence in every time umwitthe total measure of

deviations that produces smooth sequence on the averagefig&rticular,

F. = max, |x, — kr/|landF, = max,  (x,— kr,)"
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Go = K= Zitqlry — krilandG, = Efoy By (xy — kry)®

i = i i e = ] el

in PRVP denote some particular objectives. We desoffix a for the absolute deviation
objective and suffixs for the square deviation, for example, problEmfor the problem
PRVP with the objective functiofi, and the constraints. With an appropriate weight

i=1,..,n, the weighted problem is formulated.

An alternative objective for the minimization oftkleviation between the times at which
a unit of a product be actually produced and theetat which the unit of the product is
needed to be produced is intuitively similar to BRRVP [28].

3. Sequencing Procedures

3.1. Heuristic approach

The ORVP is computationally more challenging. Thiebem 3: is NP-hard in the

ordinary sense as the NP-hard scheduling problemand the shortest job reduces to the
ORVP [34] and the problem Fea with only two levislSNP-hard in the strong sense as

the strongly NP-hard3-partition problem transforms into the ORVP in pdeu
polynomial time [41]. However, a number of heudstgives rise to suboptimal solutions.

The goal chasing methods GCM | and GCM Il used ayofa [51], see also [32],
construct a sequence filling one position at a tfnoen first slot to the last one. The
variability is considered at the sub-assembly lavieéreas the variability at the product
level is ignored. GCM Il compared to GCM | repretsea decrease in computational time
because the sum is formed only on the componenésgi¥en product in GCM II [59].
GCM | and GCM Il are myopic. A myopic polynomial uréstic, extended goal chasing
method (EGCM) that considers more levels, adoptd@@nd GCM Il as a special case
[49]. The myopia lies in the fact that it only takene step. Taking two steps into account,
the myopia can be reduced [9].

Three algorithms and two heuristics are formulated47]. The algorithml and the

algorithm 3 with heuristic 1 (MA3H1) consider the product gt@ot the parts usage
rates. It is a one-stage myopic heuristic with claxipy O(nD). The algorithms may not
yield feasible sequence but if feasible it is optintoo. The algorithn@ with heuristic2
(MA3H2) is the improved two-stage heuristic withngglexity O(n2D). MA3H2 is of

highest quality for feasible solutions among GCMGCM Il, MA3H1 and MA3H2 [59,
25].

Time spread (TS) heuristic employs similar procedas GCM1 with function in which
time required to assemble products are applied.gaoison of different methods through
simulation analysis show that TS and MA3H2 seelmgt@ffective [60].

Inman and Bulfin’s earliest due date (EDD) ruledshen ideal time of production of each
product [28], Ding and Cheng’s two-stage algorittiiat minimizes the variation of
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the two stages [22, 23] and MA3H2 heuristic obtg@od solutions. Modified forms
of these, with appropriate weights, are useful ra#teves for frequent updates of
sequencing [15].

A local search heuristic that attempts to swapotftker of assembly of a pair of products
provides near-optimal sequence for realistic-sizdblems in a reasonable time. It may be
extended considering release date and due datga@iots[27].

The problem with a bicriterion objective of partage and setup time has inversely
correlated objective values. An efficient frontigmere simultaneously maximization of
feasibility and minimization of setup is desired,axploited. Such frontier is explored
using heuristics such as tabu search, simulateglading, genetic algorithm, ant colony
optimization approach, beam search heuristic,i@eifneural network etc [44, 45, 16,
43].

Suboptimal solutions using heuristics, for examfadbu search and branch and bound to
the problem with the objective for parts usage wodk load [48, 60], and [24]; parts
usage and line length [6]; parts usage and lingpstge, [69, 32] can be obtained.

3.2. Dynamic programming

Let the demand vector at levitlbe d = (d,,....d, ) and the states in a schedule be
X = (x4, ...x, ) with [X] = E_:":’—I x; wherex; is the cumulative production of
productf, x; = d.. Let e. be the unit vector withi; entries all of which are zero

except for a singlel in the " row, and " = wy (t;,, — r; 272, t,..) and Q

B

) be the matrices of dimensien n,, n = e 1 M-

= W,

kL

(ri{p - TE:=1 t

nlg
Let [[TX|l; with the maximum norm|lx||, = max[x,| i=1,..,1y and
tt

(I1Qx[|,)*  with the Euclidean nornl|x||, = W!IE?:'H x;° be the maximum of

absolute deviation and the sum of square deviatidrectual production from the ideal
production over all parts and products, respegtivehereX is the amount of product

produced. Define &%) and ®(X) to be the minimum of the maximum absolute
deviation and the minimum of the total square déwis respectively for all parts and
products over all partial schedules.f

The DP recursion forigY) is

fo) = a(X:X=0)=0,

GX) = min {max{e(X — ¢ ), IFXl,}:i=1, ... 1n,x, = 1]
with g(X) andl|I'(X: X = d)||, = 0 for any state¥.

The DP recursion fob (X)) is
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ole) = min {P(X— e )+ (]| 3)211' =1, ., x = 1)
with

©(X) = 0 and (|| Q(X: X = d)ll,)* =
for any state¥ [41].

In any state¥, x, can have any valuel, 1, ..., d,. The space and time complexities of

the procedures ard [H::—i (d. + 1)) and O(nyn H?§1 (d. = 1)), respectively
[50]. The number of feasible schedules for any [mobinstance is% which is

considerably larger than the number of states ine tlDP recursion.
H?éi(ff;- + 1) = (D"“_—H"j”'— shows that the DP algorithm is effective for small

number of products even with large number of codirging the enumeration process,
an excessive amount of time or that of space isaedl by using some fast heuristic as a
filter which eliminates any state from DP’s stapa®e that would lead to no optimality
[41]. If the heuristics yield near-optimal sequesicthen the state space size could be
reduced. The DP algorithm progresses through tite space in the forward direction of

increasing the cardinality as the procedure geesrall statest with |X| = k before
|¥| =k +1forallk =1,..,D,.

3.3. Assignment method

The problem can be solved pseudo-polynomially fansng the problem into an
equivalent assignment problem. Calculation of ts&igmment costs is based on the level

curves f.(j—kr. ), j=0,1,...d;; k=01, ..., D and the positions in which each

copyj of product!, j = 1, ..., d,,{ =1, ... nis sequenced.

e -

If all copies of product are sequenced at their ideal positigEQ§ = [': 11, the ceiling

T

of the unique crossing point satisfyingf;(j —kr,) = f.(j—1—kr.),
j=1,....d,, the product will contribute the costnf; f;(j — k) to the total cost of
the solution and an optimal sequence is obviougu&gcing the products at their ideal
positions minimizes the problends and &, however, leads to infeasibility when more

than one copy compete for the same ideal positidche sequence. Competition occurs
in general case. Higher priority is givenjtooverj wheneverj < J' to avoid competition

and (1, j) is assigned to a positidn k = F: _11

The new assignment contributes additional cdgf,, = 0 where

Cipe = P, if k= Zij

Ejc
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0, ifk= Z,
k-1
Z Y if k= Z;
=z :

Y= fU-b)-Ff0-1-lr)ifl< Z,
fUG—1— ) - filG—lr)if l= Z

with

The assignment problem equivalent to the prokiem, [40],

; ] n d; .
min )2 N EJ.-:i Ciie Xi e (3.1)
subjectto X', Edzi % = L k=1,..,D (3.2)
Thoixe =1, i=1,..m j=1,..d;, (3.3)

wherex, .. = 1, if (i, /) is assigned to time urk andQ, otherwise

Let X={(i k)i=1 ... mj=1...d;k=1,..,D) be the set of the
assignment o1, j) to k. AsetX £ Xis ¥ -feasible if the following constraints hold.
¢,: For eachk, k =1, ..., D, there is exactly onki,j),i = 1,..,mj = 1,..,d.
suchthat(i, j, k) & X, i.e., exactly one copy is produced at one timie un

¢,: For each(i, j),i = 1,..,7; ) = 1,..,d,, there is exactly onk, k = 1,...,D
such that(i, 7, k] € X, i.e., each copy is produced exactly once.

co: If (1], k), [:ij .f-é} € X, andk = K thenj < j, i.e., lower indices copies are
produced earlier.

Constraintscy andc., are related to the assignment problem. Constijrimposes an
order on copies of a product.

Theorem 3.1[40] For any feasible ¥ & X,
G = Ziijaex Cgn T Zi= Zi=1 infif;(j — kry).

jkIEX

The result becomes an inequality witheut An optimal solution cannot be obtained by

simply solving the assignment problem sitmzgs not the assignment type.

Theorem 3.2 [40] If X satisfies ¢; and c,, then X satisfying c,, €5, c5 With
e(X) = c(X) can be determined in O (D) time. Moreover, each copy in the sequence

s fromX preserves the order that it hasin the sequence s from X.
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Since there arel” values iy, ;; , D* valuesC;;, and each take€? (D] time to
calculate, the Hungarian method ta!él'-[sDaj time to solve the assignment problem with
2D nodes. The assignment can be made order presdrvidl D'} time. Hence, an
optimal solution to the problem G can be obtaineﬁ?'[Daj time, see [40]. A number of

algorithms solve the assignment problem of the lerotiz [52].

The approach for the problefs is applicable in every - norm and particular td -
norm, see [21].

The corresponding assignment problem equivaletite@roblem is

m”ﬂ: =1 _ _.1 _LI-::_-[ 5. i 1."".'1: [3'4)

L L

subject to the constrain(s3.2 ) and(3.3) where
p=max{f,(j—1—(k—1)r)— fi(j—kr)Li=1,.. . mj
=1,..,d;k=1,...D.

The assignment costs grow to the left and to thlet firom the ideal posmon[ 1 in

the assignment matrl[ﬁ:-,-k ] [10]. One ideal position exists in each row of thatrix,
however, there exist two ideal positions in thesoafsa competition.

The problem is solved by means either of specifitibneck assignment algorithms or as
a sequence of assignment problem with some motiifitmsuch as use of a binary matrix
instead of the bottleneck assignment matrix andicgijon of bisection search to find the

optimal bottleneck value [10]. Optimal solution dzaobtained ir? (22 *) time.

The bottleneck assignment costsB,, for which fi{x, — kr.) <1,
i=1,..,nk=1,..,D, can be calculated in tim&(nD) but it remains open

whether the problem can be solvedGi{nD). If it exists, it would be better than the
existing solution procedures [38].

A cyclic sequence substantially reduces the timapdexity. Such sequences exist in the
problem&, [47, 49]. The cyclic sequences are optimal, toaohcatenatiors™ of

copies of an optimal sequence s for the instapde, ..., d,, ) of the problemG,is
optimal for (nd,,...md, ), 7 = 1 [36]. It builds a sequence for a longer time
horizon. Such a sequence can be found under themasien f;, = f,i = 1,...,n
wheref is convex and symmetric with minimughat 0 [11].
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3.4. Perfect matching method

The problemF, is solved by reducing it to an order-preservintfgm matching problem
via single machine scheduling release/due date decipioblem [55]. The perfect
matching problem is constructed inlg-convex bipartite grapts = (T U 15, &)
with 1, = {(i, )i =1,...,mj=1,..,d.], set of thej™ copy of producti,
¥y = {1,.., D}, the starting times and the edge &etvith the earliest starting time
E(i,j) and the latest starting time L(i,j)for (£ j) defined as
£={(k (i,/))|k €[E(F),L(j)] S Vy}. For a given bound and the level

curves |f —krl i=1,..mj=01,..,d;:k=0,1..,D the values
E(i,jlandL{Lj), i=1,..,n:] = 1,..,d; are calculated in tim& () as the

unique integerE (1, j) = [_—ﬂ andL(i,j) = {"._1_5 + :LJ [13].

T

A modified version of earliest due date (EDD) rwkith complexity O(|E|) in 1/ -
convex bipartite grapli}y W V5, &) finds an order-preserving perfect matching for the
upper boundd = 1 [26].

A stronger upper bound has been obtained for tbelgm . If B be any optimal value,

1 |A; : 1 D
then —{—"J = F =1—= where &, = ——,
A L2 D - gu:'d (gD}

i=1,..,7 [13], and

1

2in—17)

B<1— [62]. Therefore, it holds~ H < B <1 max{t
_l. &

D 2(?!—1_'-}

. : 1 .
for n = 2. The optimal valueli cannot be less thanfor evenf; smce% {TJ =

Ba |

1 . 1 1 |4 .
and cannot be less tharfor odd &; since= = — {—J = [20]. It is natural to seek

A -

B

: . . 1
instances with optimal value less than

It has been shown that only the standard instaecéhe instance wittd, = -+ = d_,
gcd(dy,..,d,) = 1, has optimal B = :ﬂvzi <2 if and only if
d.= 2"'i=1,..,n [35 14]. It came into existence as the small alwns

conjecture [13]. If=X % , all products
must be sequenced in the ideal posit[a:é_—ﬂ for eachj, which happens ifd,, is

divisible by eachd,i=1,..,n— 1. This geometric proof exploits a natural
symmetry of regular polygons inscribed in a cirofecircumferencel) such that each
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=4

polygon corresponds to a different product havihgcorners for product at[ "_ﬂ

points on the perimeter of the circle. Consequeriydemands are the firgt non-

negative powers of [35].

The small deviations conjecture is shown to be &sia consequence of the Fraenkel's
conjecture for symmetric case using a fact thatolution to the problemF, with

d, = 2°7Yfor i =1,..,m, n =2 is periodic, symmetric and balanced word [14].
The Fraenkel's conjecture for symmetric case st#tes a periodic, symmetric and

balanced word witly = --- <1, 11 = 2, exists if and only if, = % [14].

A d-balanced word on a finite sgt, ..., 7} is an infinite sequence = =,=, ... with

s, € {1,...,m} such that every two subsequences of equal lerayikist of only those
letters whose number of occurrences in each subsequdiffer by at most a positive
integer & (See [63]). Note thal-balanced word is a balanced word. Consider aefinit
word W on {1, ...,n} of lengthD with d. occurrences of a lettérand+, = % the

rate of letteri with r; < -+ =< 7, . W is said to be symmetric W = W?¥, a mirror
reflection of . An infinite wordw is periodic ifw = W ...for somel¥.

For a sequencs with maximum deviatior5, any infinite periodic words, with period

and

abe | L3

. i
= is 1-balanced2-balanced andi-balanced on each produigtif & << -, F =

£ = 1, respectively [29]. The inclusions are proper [21]

Unfortunately, thel-balanced words are unlikely for most rates toteXikere exists an
optimal sequence for the probleF) in the set of all3-balanced words. However, it
remains unresolved whether there always exi§lsbalanced word that is optimal for the

problem F,. The challenging problem of balanced words in ficacis to construct an

infinite periodic sequence over a finite set ofdet with given rates and distributed as
evenly as possible.

; . _ 1
Though, only the instanced, = 271 i=1,..,nnn> 2 has B < = for the

i .
— exist i.e. the optimal

problem £, for 1. = 2, infinitely many instances wittf <

value of the problenf, is less thal% if and only if one of demancdi, or d, is odd and

the other even [14]. A sequence with distar[a_g% and {iJ for productl with demand
[ (=9

e, and [31 and {EI for product2 with demandd, is optimal for two product case.
E: E:
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This procedure solves both the problémand the response time variability problem

for n = 2, which is not true in general far = 2. The response time variability problem

minimizes the variability of time for which clientsvents, jobs or products wait for the
next turn in obtaining the resources necessarytiair advance. This problem intends to
utilize the resources so as to ensure a fair sasfincommon resources between the
products which requires to be evenly distributedhsthat the occurrences in any two
consecutive items of the same product is to keeprdtant distance as much as possible
all the time. The general case of the problem ishid®l [17]. This result naturally
motivates to look at other possible common soliwith respect to different objectives.

The EDD algorithm matches each ascencing 13 to the unmatche(Z, j} with the
smallest L(i,j). Since E(i,j) and L (%, j) are strictly monotonic increasing for
consecutive copies of each product [55] &(t,j + 1) cannot be less thah(¥, j)

with & =2 1 [37] the algorithm ensures the perfect matchinhe@rder-preserved.

The weighted problem can analogously be reducedhéo order-preserved perfect
matching problem [57]. Heavy weightage for particutopies of a product restricts the

time window[ E(i. j}, L(L, j)] and increases the separation of consecutive copibst
product in the sequenceE (i, j] and L{ij} are calculated as the integers

An order-preserved perfect matching gives rise fimagible solution.

The necessary and sufficient condition for a fdas#imlution to the problenf'z is the
following.

Theorem 3.3 [13] The problem f= has a feasible solution if and only if for all
ki, ke {1,...,D}with k1 = kzand,

X max(0, k7, + B8] — [(ky —1)r,— Bl) =
X max(0, [k,r, =Bl — |(ky,—1)r,+ B]) =

ks —k,+ 1 and
ks

— Ky + L
The theorem tests the feasibility Bfin time @ (=D =) though less efficient tha8 (D)

time and of a pai(k1,k2), k1, k2={1,...,D}in O(n) time [38].

The perfect matching using a certain bound obtathedugh a bisection search in the
1
interval [1 — Tmax, 1 — E] yields an optimal sequence & DlogD) time. The lower

boundl — mazx is tight [55].
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i i
Since the deviations are muItipIesEJfand the upper bound i — > the bound for

the optimal value can be ong = % withk £{1,...,D — 11[42]. This fact can be

implemented to calculate possible optimal valuestf@ problem Fz only for these
values. The optimal sequences of an instafive= 2, dz = 3, d3 = 5 obtained at
bound B=> ae 3-2-1-3-2-3-3-1-2—3and

3-2—-1—3—3—-2—-—3—1—2—73, here the5*" and the 6th positions are
swapped.

Ea |

An optimal sequence for the weighted problem isivietd as follows:

Theorem 3.4 [57] An optimal sequence for the weighted problem can be determined
when a bisection search is performed in the interval [minaw:(1 — i), maxiw:]in
exact pseudopolynomial time O Dlo g ( Depmaxiw:))), where @ is a positive integer
constant that depends on the problem data.

The exact complexity of the problef still remains open. The probletiz has been

proved to be Co-NP but remains open whether it asN@-complete or polynomially
solvable [13]. Observation of the input sig{ X, leg d:) = O(n legD) and the

involvement of nD variables ancd?(nD) constraints in the model indicate that an
expectation of a polynomial algorithm for this pledn seems far from trivial.

There exists cyclic optimal sequence for the pnobi@: [57]. Letli: be a factor ofl)

and di with i = wivi for product i. Each copy of produdt is labeled as
(e—1)vi+ jwheree = 1,...,uiandj = 1,...,vi, thee™ period of copies of
producti that consists of’i copies of product. There will betii such periods for each

product. If all of one period’s early (late) stagitimes are calculated, then the early and
the late starting times for all copies in all pesocan be calculated from these values.

Whenw: = ged (d:, D) = 1, the time required to calculate the starting ticas be
reduced by a factor c.

Theorem 35 [57] If u = gecd(d:...,dr), i =1,...,7, then the problem F=

consists of it repetitions of the optimal sequence.

The problemG can be represented as a complete convex bipaighted graph orl;
={1,...,D). Since each(l, ;) can be produced at any instaki it is clear that
E(i.,jy=1andL(ij) = D. The costC:x for (i.]) at k is taken as the weight for
the edge( k, (1, j) ). The problem is to find a perfect matching witmimium sum of the
weights [56].
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Theorem 3.6 [42] A sequence s for the problem & is optimal if and only if there is a
minimum weight perfect matching M with a weight function w= : 71 v V2 - H such
that wk+wi; = Cykv(k (i,j)) €& and
E. w Wy T o W= X "'-=.‘r_rC:'_,-':c ==,

= | P TVETS R P L7010
kEV, LEJIEV, ™™ i Lk i.)E

Let us say an incomplete convex bipartite graphl/arif weights are attributed to only
those edges (k. (i,j)) of which & € [E(Lj),L(Lj)]with B = 1. This
substantially reduces the number of weights to aleutated. A 1-bounded optimal
solution for the problené, if exists, could be obtained i@(nD=logD) time, since
|E| = (n+2)D holds forB = 1 [56].

Theorem 3.7 [33] The sequence optimal to the problem & with f: = f, ¥i, and
—1 = xie— kr: = 1 for the incomplete graph is also optimal to the problem & for the
complete graph.

This result cannot be generalized for non-identim@dt functions in[—1,1]. As an

example, the instance{24,24, 28,628,42, 42,42 42 48, 16)with the cost
functions,

Fila) = falx) = aylxl, f3(a) = falo) = ay |zl f2(x) = felx) =

f7(x) = fe(x) = a;lxl, fo(x) = a, |x], fio(x) = a;|x|

where

o, = 163828.7.a,, a, = 16826.6.a,, 0, = 168242 .a,, a.=

16827 . ag,a; = 1

shows that-=1 = x:ik — kv = 1 will not hold for some positions [33].

But the existence of such a solution is rarely fidss The question of determining
minimum £ such that the optimal solution to the problémis 5-bounded remains

unanswered [21]. It is shown that the upper boumthe optimal value of the problef
is D though the bound is not tight. However, the loweund for the problent:: is

n Di—
“i=1"5p

[1]. Note that a solution is said to ti-bounded orE-feasible if the

deviation is less than a given boukid

The perfect matching method can also be appligtdegaeneralized pinwheel scheduling
problem or the Liu-Layland periodic scheduling erdh real-time environments, see [37].

The generalized pinwheel scheduling problem fiaer pairs of positive integers
(a1, b1),....(an bn) is to find an infinite sequences = s1sz... on finite set

f1,...,7n} such thats; = {1,...,m}, j € N and any subsequence of s consisting:of
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consecutive elements af containsi at leasta: times,f € {1,...,7n}. The solution
. 41, :
procedure to the problefiz with & =2 1 and the rates: = Ej , I =1,....nyields
i
a generalized pinwheel schedule for the instanfai, bi]),..., (&= b=) if

E?q% += 1 [38]. The Liu-Layland periodic scheduling probléso find an infinite
sequences = s152...0n a finite sef{1,...,n} such thats;« {1,..., 71}, j € N and a
preemptive and periodic job occurs exactlyl': times on any subsequence of
consisting ofl": consecutive elements sfwith C: < Ti, i € {1,..., n} whereC:andT:
are the run-time and request period for ioffhe solution to the probleifiz with & =2 1

and rates: = E— i =1,...,1tis a periodic schedule [38].

3.5. Simultaneous optimality

Study of finding solutions that minimize a numbérbjective functions simultaneously
is useful. Such solutions not only reduce time clexipy of the problem but also are
more applicable in practice.

A Pareto algorithm that determines all Pareto optimequences for the bicriterion
sequencing problem with the objectivEa and & exist. The algorithm determines an

order preserving perfect matching wih= 1. Then a minimum weight order-
preserving perfect matching with the weighfit for the edgelk, (i),

i=1,....n; j=1,...,d; k=1,...,D is determined. The corresponding
production sequence isﬂ a Pareto optimal sequencBamgto optimal solution can be
determined in O(nd-logD) time and all Pareto optimal solutions in

O(ndmaxp*logD) time [56].

Let 51 be the set of all-feasible sequences. The two problemsrequivalent if both
have the same set of optimal sequence§ nThe problemsrx and{zs on 51 have the
same cosCijk = O for k € [E(i, j), L1 )] [42] and areS -equivalent [18, 19]. The
assumption in [33] that th& 1-equivalence is due to symmetry and convexity & th
objectives is not true. The instant23, 23, 1, 1, 1, 1) with the function

1

=%

flask = krd = =2 G = k) — 175
(p —kr) = —x 0
1 A _ =
1—z ['j':'.'{ H.f':-] 1-%
i = (xy — k)
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is a counterexample [18], wheie is optimal value to the problerfz. An optimal
sequence for the problef in 51is optimal for the probler&s in 51, too. With this, the

problem{ = can be solved by means of solving the prob&@sin 51. It is advantageous

for the complexity since the conversion of the filog point numbers to integers of
absolute penalties required is smaller in magnithde that of the square penalties [33].

An optimal solution in51 to the problen{:: may not be optimal to the proble®x, [18,
19]. If the problem{a has no optimal solution i1, the optimality is not guaranteed,

however, it provides a lower and an upper boundshie optimal solution to the problem
{rz. The problemé=z and &= may not have optimal sequencessin[18].

4. The PRV and Apportionment Problems

The apportionment problem, though it appears ifedéht situations, has been studied as
a problem for the assignment of seats of a legisdato states or parties and applied in
real sense [58, 5, 37]. There exists a connectitwéden the PRVP and the apportionment
problem [8, 30].

In divisor method of apportionment, a divisor fuoot &, a monotone real-valued
function defined over the set of non-negative ietsgis defined as = A{t) =t +1
wheret is an integer for which there exists no pair dégerst = @ and ¢ = 1 with
A(t= £+ 1) andA(f= #). Suppose that a cumulative seats have been
apportioned in the stagélsthroughk. Then a seat is apportioned to a staite the stage

Bi -

=t R WL

T
it 1 =1,...,n with p; = p: implies? = % , wherep:

& + 1 when

=

and ; are the populations of statésand j respectively. The time complexity of the
procedure is @(nD) [4]. A divisor method is said to be parametric if
A(t)= t+ § ¥t 0 = § = 1. Adams, Condorcet, Webster and Sainte-Lague and

Jefferson and d’'Hondt use this method wiit= 0, &§ = 0.4,§ = 0.5, andd = 1,
respectively [3].

The EDD rule in [28] coincides with the parametrieethod of apportionment with
1 . . .
o = — [8]. The parametric method is cyclic [3]. The n@thdeveloped by [55] to break

a tie by choosing the smalleki i, ) for unmatched i, j} to sequence & £ V1 while
solving the bottleneck PRVP, is the parametric méthof apportionment with
4 = E = 1[30]. The sequences of three products with dematids 2, dz = 3 and

- 1 .
d3 = 5 obtained by parametric method widh= — are the same the perfect matching

method withE = % yields.
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It is noteworthy that the apportionment problenmigre directly related to a problem
that determines the number of units of productspitoduce in such a way that the
proportions are as close to the ideal proportiegassible when total number of units are
given [8].

5. Production Smoothing Problem

The assumption that allows setup and arbitrarygssiog times forces the problem to be
the production smoothing problem, a two-phase gmblThe first phase is the batching
problem that determines batch size and the nunfldEtohes of the products. The second
phase is the sequencing problem that sequencésittiees.

o
A takt-timet = o the ratio of the time horizo® to the number of time-bucke® is

used as a key factor. A batch (a copy or severaikesd of a product is produced during a

o

7
-5
o =i

such thatl) — E"=1_ d, = 0, wheres: andp: are the setup and the processing time of
producti,i = 1,..., 7.

takt-time. Letd ;=

.1 =1,...,1 batches of produdtbe produced durinf

The multi-objective non-linear integer programmingdel of the problem [38], is

minimize  Tp=y Ziy(3)* (2 —k ) (5.1)

maximize D (5.2)
subject to

xi(k-1) < xik (5.3)

%o =0,%,= d (54)

7 -=D (5.5)

D = 0,integer (5.6)

The constraints5.3) and (5.4) show that each product is assignec&;.’?gnbatches and
the constraint5.5) and(5.6) ensure the feasibility dP.

Recently, a Pareto optimal solution has been deeeld38]. The solution procedure
determinesl in O (nD}) time and sequence of the batches is determin&t =) time
by transforming the problem into the assignmenbjem.

The cosfi . Of assigning % batch of product to thek** position is
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Cow= GOPE S ¥y ifk< 2

Lk

with B, = (=159 — (-1 -1 ifl < Z,,

G-1-122 - -1 1= Z,

and Iﬁ} the ceiling of the unique crossing point satisfyi
& E:

(G—13=(-1-15)7j=1..4d.

Some heuristics and meta-heuristics appear initdrature though the batching problem
is proven to be NP-hard [66].

A dynamic programming for the exact solution hasrbexplored. However, its use in
real environment due to its computational time nspiiactical [68]. The dynamic
programming has been extended to a bounded dynanmitamming procedure to solve
large-size problem within practical times. Some ristigs, meta-heuristics and hybrid
meta-heuristics such as north-east solution segafametric heuristic search, strategic
oscillation, scatter search, path relinking, roktasiu search are also introduced to solve
the problem [67]. The problem has been studied simgle machine in [67] and on the
flow shop in [68].

6. Smoothing Workload Problem

The problem of smoothing the workload on each wiatien on the line is a secondary
concern of the MMJITSP. This case has drawn atientirom researchers and

practitioners as MMJIT sequencing that deals withdoals of keeping a constant rate of
parts usage and of smoothing workload.

By tiz, we represent the assembly time required for aaira producti,{ = 1,...,7 0n
a workstations, s = 1,...,m. Clearly, the assembly time required fdr unites of
product{ is d:itiz. Then, letTs = X', d.£.. be the total assembly time @nover

planning horizonT". Let ¢ = E be the cycle time, wher® = X" d. is the total

demand. Ideally, the workstation should spencf%ir:‘* time on product’ during the
periods 1 through k. However, the actual time required #sxi, where xi,

i=1,...,n, k=1,...,D be the cumulative production of proddauring the same
periods. The deviation between the actual anddbal iassembly times on workstatisn

incurs either idle line or work overload on theelinThe objective of the problem is to
minimize the sum of the deviations on all the wtatkiens of the line.

The mathematical model of the smoothing problen}, [i34
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minimizeZl -, T, T F(fox, — il

subject to( 2.5) — (2.8). fris non-negative unimodal convex function havthgt 0.

The model assumes all products may not have the saeration time at any workstation

ckd

on the line. The problem to minimiz& Ly f(f,%, — ——=) subject to the

constraints( 2.5 — (2.8) shows that the smoothing workload problem hasstmae
form of the PRVP [34]. A model of the problem sianito the PRVP is also formulated in
[46]. The solution to this problem can be obtainsthg EDD rule in [28]. Another model
is in existence based on the concept that the warka workstation stops the conveyor
of the products if incompletion of the operationscur within the work zone. Two
algorithms branch and bound for small size problamd simulated annealing for large
size case solve the problem [64].

A pseudo-polynomial solution procedure with comjikex2 (1o gD exist to solve the

problem with a finite number of workstations, thispfacement time and the time the
worker needs to go from one finished product totla@oone entering the station. See [7].
A tabu search solves the problem with utility wdvkork done by the utility workers),
equivalent to minimizing the work overload, for ses products and workstations [53].

A number of papers studies joint problem that stemdously addresses both parts usage
and work load goals. See, for example, [2, 61]yAainic programming (DP) is effective
for small number of products though with large nemlof copies [50]. For large

problems, two myopic heuristics 'one-stage’ heigistith complexity & () that fills
one position at a time and its improved case ’'ttems heuristic with complexity
{}[ﬂ:j exist [50, 48]. The joint problem as an assignnmoblem gives rise to optimal
sequence for small input size [31].

7. Concluding Remarks

The mathematical models for MMJITSP and differeaduencing approaches developed
till date have been analyzed. The MMJITSP with goal of keeping constant rate of

usage of parts is focused. The study shows thaptblelems have real world exciting

applications as well as interesting mathematicatuies of theoretical value. We

explicitly explore, with justification of the grodrfor future research, the questions which
still remain open and are challenging.

The problem, under the assumption that the prodwezisire approximately the same
number and mix of parts or the pegging assumpsamle-level) is solvable. A pseudo-

polynomial algorithm of the assignment problem jplacable to the problent. The
approach can also be applied to the bottleneck PRXPnecessary modification.

The other approach for solving the proble?a is the binary search fo5-feasible
sequence on perfect matching in bipartite graphisltalso of pseudo-polynomial
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complexity. This property is applicable to othernegml convex symmetric
nonnegative functions also. The bouBd= 1 is sufficient for searching an optimal

solution to the problerk'= and similar results hold for the probleft.

The approach applied to the incomplete bipartitaphs to solve the problerf is
developed. But it is yet unknown what should berttieimum size of5 such that theS-

bounded solution guarantees an optimal sequenaxking for a goods is appealing as
this would reduce the complexity.

Despite much effort to solve the PRVP with pseudbspomial complexity on the input
size of the demands, the exact complexity of thglstlevel problem still remains open.

The problemF= has been proved to be Co-NP but remains open ehétlis Co-NP-
complete or polynomially solvable. To have a cossle statement, it would be one issue

of the future research. Analyzing the work-in-pexgg, solution of this problem with
polynomial time complexity seems unlikely to exist.

Since the PRVP is a group of single-objective peoid and the properties of optimal
sequences may differ significantly for differenfexdive functions, obtaining common or
closely related optimal sequences to different @bje functions would significantly save
the complexity cost.

The ORVP even with two-levels are strongly NP-harterefore, an improvement of
existing approximation algorithms, for example dyma programming or local search
techniques would contribute to the research.

Existence of cyclic optimal sequences also conalulgrreduces the computational time.
This problem has been resolved for the PRV caseveider, the conjecture whether
cyclic sequences to the ORVP are optimal is giéira

The elegant algebraic concept of balanced wordsdoted in this field is relatively new.
The 1-balanced words cannot be obtained for most rdtessthe set of alG-balanced

words consists of optimal sequence for the protfamMinimality of this set is unknown
and enumeration of this set for optimality is exgiee. It is still unsolved whether the set
of all 2-balanced words is sufficient for an optimal seqeeror the problemFs.

Characterization of balanced words to the other M@®P would strengthen the concept
of balanced words in obtaining balanced sequence.

The production smoothing problem as a variant efMMJITSP with arbitrary nonzero
processing and setup times helps bridge the gapebetthe theoretical achievements and
industrial practice. Study of this problem in aigfr of manufacturing environments

for example shop scheduling systems is an imporesgarch area.

The relation between the MMJITSP and well establishpportionment problem found
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in the literature shows that the parametric methitd & =

i
-~ seems to be closely

related to Inman and Bulfin’'s EDD algorithm and gefect matching method though no
formal proof is in existence.
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